Charles D Derby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5076388/publications.pdf

Version: 2024-02-01

45 papers

1,644 citations

279798 23 h-index 289244 40 g-index

46 all docs

46 docs citations

46 times ranked 1214 citing authors

#	Article	IF	CITATIONS
1	Neural Processing, Perception, and Behavioral Responses to Natural Chemical Stimuli by Fish and Crustaceans. Journal of Chemical Ecology, 2008, 34, 898-914.	1.8	159
2	Chemically stimulated feeding behavior in marine animals. Journal of Chemical Ecology, 1986, 12, 989-1011.	1.8	146
3	Escape by Inking and Secreting: Marine Molluscs Avoid Predators Through a Rich Array of Chemicals and Mechanisms. Biological Bulletin, 2007, 213, 274-289.	1.8	116
4	Learning from spiny lobsters about chemosensory coding of mixtures. Physiology and Behavior, 2000, 69, 203-209.	2.1	93
5	Behavioral chemoattractants for the shrimp, Palaemonetes pugio: identification of active components in food extracts and evidence of synergistic mixture interactions. Chemical Senses, 1986, 11, 49-64.	2.0	89
6	Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chemical Senses, 2016, 41, 381-398.	2.0	76
7	Mixture suppression in olfaction: electrophysiological evaluation of the contribution of peripheral and central neural components. Chemical Senses, 1985, 10, 301-316.	2.0	66
8	Chemical Composition of Inks of Diverse Marine Molluscs Suggests Convergent Chemical Defenses. Journal of Chemical Ecology, 2007, 33, 1105-1113.	1.8	66
9	Finding food: how marine invertebrates use chemical cues to track and select food. Natural Product Reports, 2017, 34, 514-528.	10.3	63
10	Functional units of a compound nose: Aesthetasc sensilla house similar populations of olfactory receptor neurons on the crustacean antennule. Journal of Comparative Neurology, 2000, 418, 270-280.	1.6	58
11	Postembryonic proliferation in the spiny lobster antennular epithelium: Rate of genesis of olfactory receptor neurons is dependent on molt stage. Journal of Neurobiology, 2001, 47, 51-66.	3.6	52
12	Electrophysiological identification of the stimulatory and interactive components of a complex odorant. Chemical Senses, 1984, 9, 201-218.	2.0	51
13	Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. PLoS ONE, 2018, 13, e0203935.	2.5	45
14	Krill meal enhances performance of feed pellets through concentration-dependent prolongation of consumption by Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 2016, 458, 13-20.	3.5	40
15	The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Structure and Development, 2003, 32, 175-188.	1.4	38
16	Comparison of transcriptomes from two chemosensory organs in four decapod crustaceans reveals hundreds of candidate chemoreceptor proteins. PLoS ONE, 2020, 15, e0230266.	2.5	38
17	Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab, Callinectes sapidus. Cell and Tissue Research, 1996, 285, 321-330.	2.9	37
18	Multiple excitatory receptor types on individual olfactory neurons: implications for coding of mixtures in the spiny lobster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1997, 180, 481-491.	1.6	37

#	Article	IF	CITATIONS
19	Perception of odor mixtures by the spiny lobster Panulirus argus. Chemical Senses, 1994, 19, 331-347.	2.0	32
20	The Neuroecology of Chemical Defenses. Integrative and Comparative Biology, 2011, 51, 771-780.	2.0	30
21	A CUB-serine protease in the olfactory organ of the spiny lobsterPanulirus argus. Journal of Neurobiology, 2001, 49, 277-302.	3.6	27
22	Isolation and Structural Elucidation of Novel Mycosporineâ€Like Amino Acids as Alarm Cues in the Defensive Ink Secretion of the Sea Hare ⟨i⟩Aplysia californica⟨/i⟩. Helvetica Chimica Acta, 2011, 94, 1012-1018.	1.6	25
23	Biochemical characterization of independent olfactory receptor sites for 5′-AMP and taurine in the spiny lobster. Brain Research, 1992, 583, 262-270.	2.2	24
24	Oesophageal chemoreceptors of blue crabs, <i>Callinectes sapidus </i> , sense chemical deterrents and can block ingestion of food. Journal of Experimental Biology, 2012, 215, 1700-1710.	1.7	21
25	Non-reciprocal cross-adaptation of spiking responses of individual olfactory receptor neurons of spiny lobsters: evidence for two excitatory transduction pathways. Brain Research, 1994, 643, 136-149.	2.2	20
26	Comparison of turnover in the olfactory organ of early juvenile stage and adult Caribbean spiny lobsters. Arthropod Structure and Development, 2003, 31, 297-311.	1.4	19
27	Using age to evaluate reproduction in Caribbean spiny lobster, <i>Panulirus argus </i> , in the Florida Keys and Dry Tortugas, United States. New Zealand Journal of Marine and Freshwater Research, 2009, 43, 139-149.	2.0	19
28	Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics, 2020, 21, 649.	2.8	19
29	Lobster olfactory genomics. Integrative and Comparative Biology, 2006, 46, 940-947.	2.0	16
30	Distribution and function of <i>splash</i> , an <i>achaeteâ€scute</i> homolog in the adult olfactory organ of the Caribbean spiny lobster <i>Panulirus argus</i> . Developmental Neurobiology, 2011, 71, 316-335.	3.0	15
31	Inhibition and Dispersal of Pseudomonas aeruginosa Biofilms by Combination Treatment with Escapin Intermediate Products and Hydrogen Peroxide. Antimicrobial Agents and Chemotherapy, 2016, 60, 5554-5562.	3.2	15
32	Ink From Longfin Inshore Squid, <i>Doryteuthis pealeii</i> , as a Chemical and Visual Defense Against Two Predatory Fishes, Summer Flounder, <i>Paralichthys dentatus</i> , and Sea Catfish, <i>Ariopsis felis</i> . Biological Bulletin, 2013, 225, 152-160.	1.8	14
33	The Crustacean Antennule: A Complex Organ Adapted for Lifelong Function in Diverse Environments and Lifestyles. Biological Bulletin, 2021, 240, 67-81.	1.8	11
34	Proctolinlike immunoreactivity and identified neurosecretory cells as putative substrates for modulation of courtship display behavior in the blue crab, Callinectes sapidus., 1996, 368, 153-163.		10
35	Oxygen sensing in crustaceans: functions and mechanisms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 1-15.	1.6	10
36	G protein-coupled receptors as candidates for modulation and activation of the chemical senses in decapod crustaceans. PLoS ONE, 2021, 16, e0252066.	2.5	10

#	Article	IF	Citations
37	Chemosensory Basis of Feeding Behavior in Pacific White Shrimp, <i>Litopenaeus vannamei </i> Biological Bulletin, 2020, 239, 115-131.	1.8	9
38	Sexually dimorphic patterns of neural organization in the feeding appendages of fiddler crabs. Cell and Tissue Research, 1996, 286, 155-166.	2.9	8
39	Use of neurolipofuscin to determine age structure and growth rates of Caribbean spiny lobster <i>Panulirus argus</i> in Florida, United States. New Zealand Journal of Marine and Freshwater Research, 2009, 43, 125-137.	2.0	8
40	Pulse magnetization elicits differential gene expression in the central nervous system of the Caribbean spiny lobster, Panulirus argus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 725-742.	1.6	4
41	Transsexual limb transplants in fiddler crabs and expression of novel sensory capabilities. Journal of Comparative Neurology, 2001, 440, 311-320.	1.6	3
42	Symposium Overview. Annals of the New York Academy of Sciences, 2009, 1170, 447-449.	3.8	1
43	Understanding responses to chemical mixtures: looking forward from the past. Chemical Senses, 2022, 47, .	2.0	1
44	Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. Journal of Comparative Neurology, 2011, 519, Spc1-Spc1.	1.6	0
45	Jelle Atema, an original: a tribute to his career. Bulletin of Marine Science, 2018, 94, 467-478.	0.8	0