Zhanli Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5076244/publications.pdf

Version: 2024-02-01

759233 677142 36 542 12 22 citations h-index g-index papers 36 36 36 862 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Defects induced growth of Pt on the heterojunction of TaON N-rGO as highly CO-tolerant electrocatalyst for ethylene glycol oxidation. Applied Surface Science, 2021, 536, 147668.	6.1	11
2	SnNb ₂ O ₆ /NiCo-LDH Z-scheme heterojunction with regulated oxygen vacancies obtained by engineering the crystallinity for efficient and renewable photocatalytic H ₂ evolution. Catalysis Science and Technology, 2021, 11, 6281-6290.	4.1	5
3	Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C ₃ N ₄ with a Built-In Electric Field for Efficient Photocatalytic H ₂ Evolution. Inorganic Chemistry, 2021, 60, 15782-15796.	4.0	23
4	Ternary Interface of Pt Few‣ayered Nâ€rGO TiN for the Boasting Electrocatalytic Activity in Ethylene Glycol Oxidation. Advanced Materials Interfaces, 2020, 7, 2000808.	3.7	4
5	Facile Construction of Bi ₂ MoO ₆ /Bi/g-C ₃ N ₄ toward Efficient Photocatalytic Oxidation of Indoor Gaseous Formaldehyde with a Wide Concentration Range under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7710-7720.	6.7	35
6	In-situ synthesis of Ta2O5@few-layered rGO core-shell nanosphere with abundant oxygen vacancies for highly stable lithium-ion battery. Journal of Solid State Electrochemistry, 2020, 24, 1567-1575.	2.5	13
7	Synergistic effect of Na2Ta2O6 in Pt/sodium tantalate on promoted electrocatalytic ability toward alcohol electro-oxidation. Journal of Electroanalytical Chemistry, 2020, 864, 114083.	3.8	1
8	Integrating an Ag ⁰ â€"Ag ⁺ mediated Ag ₂ Ta ₄ O ₁₁ /Ag ₈ (Nb _{0.5} Ta _{0.5}) _{heterojunction to quickly decontaminate indoor gaseous formaldehyde under indoor temperature, humidity and sunlight irradiation conditions. Environmental Science: Nano, 2020, 7, 1831-1840.}	ıb>2.6 <td>b>Q₆₉</td>	b>Q ₆₉
9	Complementary behavior of doping and loading in Ag/C-ZnTa206 for efficient visible-light photocatalytic redox towards broad wastewater remediation. Photochemical and Photobiological Sciences, 2020, 19, 1042-1053.	2.9	5
10	Pt/N-rGO/Nb4N5 Electrocatalyst with Multilayered Structure and Ternary Synergy for Promoting Alcohol Oxidation. Journal of Alloys and Compounds, 2020, 845, 156117.	5 . 5	12
11	Oxygen enriched carbonaceous nanospheres deep anchored with PtxNiyCoz alloy nanoparticles as versatile electrocatalyst. Materials Letters, 2020, 271, 127718.	2.6	2
12	pH-Controllable regeneration and visible-light photocatalytic redox of carbon and nitrogen co-doped Zn ₃ Nb ₂ O ₈ towards degradation of multiple contaminants. Catalysis Science and Technology, 2020, 10, 2810-2820.	4.1	3
13	Multiâ€Dimensional Structure: Electrocatalytic Enhancement of 0D/1D/2D Multidimensional PtCo Alloy@Cobalt Benzoate/Graphene Composite Catalyst for Alcohol Electroâ€Oxidation (Adv. Mater.) Tj ETQq1 1 (0.7 8.4 314	rgBT /Overl <mark>oc</mark>
14	Electrocatalytic Enhancement of OD/1D/2D Multidimensional PtCo Alloy@Cobalt Benzoate/Graphene Composite Catalyst for Alcohol Electroâ€Oxidation. Advanced Materials Interfaces, 2019, 6, 1900946.	3.7	8
15	Increased interface effects of Pt Fe alloy/CeO2/C with Pt Fe selective loading on CeO2 for superior performance in direct methanol fuel cell. International Journal of Hydrogen Energy, 2019, 44, 4794-4808.	7.1	21
16	Enhanced photocatalytic activity of Ag/Ag2Ta4O11/g-C3N4 under wide-spectrum-light irradiation: H2 evolution from water reduction without co-catalyst. Journal of Colloid and Interface Science, 2019, 550, 64-72.	9.4	23
17	Assembling Bi ₂ MoO ₆ /Ru/g-C ₃ N ₄ for Highly Effective Oxygen Generation from Water Splitting under Visible-Light Irradiation. Inorganic Chemistry, 2019, 58, 7374-7384.	4.0	29
18	Regulating effect of heterojunctions on electrocatalytic oxidation of methanol for Pt/WO ₃ -NaTaO ₃ catalysts. Dalton Transactions, 2019, 48, 3061-3073.	3.3	12

#	Article	IF	Citations
19	The controllable mutual transformation of Ag+/AgO pairs in Ag3PO4/Bi2MoO6 toward the high catalytic efficiency and durable reusability. Journal of Materials Science, 2018, 53, 16524-16538.	3.7	7
20	Synergetic effect of heterojunction and doping of silver on ZnNb2O6 for superior visible-light photocatalytic activity and recyclability. Solid State Sciences, 2018, 84, 86-94.	3.2	8
21	Investigation of the Preferential Doping Site and Regulating on the Visible Light Response and Redox Performance for Fe- and/or La-Doped InNbO ₄ . Inorganic Chemistry, 2018, 57, 8558-8567.	4.0	10
22	Phosphotungstic acid binding in situ to K4Nb6O17 for the effective adsorption-photocatalytic removal of tetracycline. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	12
23	A novel heterogeneous photocatalyst for Cr (VI) reduction via planting silicotungstic acid on the surface of calcium tantalate. Molecular Catalysis, 2018, 455, 48-56.	2.0	5
24	A novel strategy to promote photo-oxidative and reductive abilities via the construction of a bipolar Bi ₂ WO ₆ /N-SrTiO ₃ material. RSC Advances, 2017, 7, 52218-52226.	3.6	16
25	Regenerated CO anti-poisoning ability by anchoring highly oxidized platinum on oxygen-functionalized carbon spheres in one-step & two-phase synthesis for methanol electro-oxidation. CrystEngComm, 2017, 19, 4815-4823.	2.6	3
26	A novel Au-loaded Na2Ta2O6 multifunctional catalyst: Thermocatalytic and photocatalytic elimination of the poisonous nitrobenzene derivatives from wastewater under natural condition. Journal of Alloys and Compounds, 2017, 695, 60-69.	5 . 5	14
27	Solvent-controlled platinum nanocrystals with a high growth rate along $\tilde{a} \in 100\tilde{a} \in 111\tilde{a} \in 111a$	ed _{3.6}	6
28	Nanospherical composite of WO3 wrapped NaTaO3: Improved photodegradation of tetracycline under visible light irradiation. Applied Surface Science, 2016, 388, 412-419.	6.1	29
29	Concentration-dependent platinum nanoassemblies with morphology-controlled electroactivity and high durability for direct methanol fuel cells. CrystEngComm, 2015, 17, 6716-6723.	2.6	3
30	A novel contractive effect of KTaO3 nanocrystals via La3+ doping and an enhanced photocatalytic performance. Journal of Alloys and Compounds, 2015, 622, 894-901.	5 . 5	58
31	K4Nb6O17·4.5H2O: A novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). Journal of Hazardous Materials, 2014, 279, 537-545.	12.4	12
32	A novel adsorbent of Na2Ta2O6 porous microspheres with Fâ [^] gradient concentration distribution: High cationic selectivity and well-regulated recycling. Journal of Hazardous Materials, 2014, 265, 226-232.	12.4	9
33	Thermoelectric metal tellurides with nanotubular structures synthesized by the Kirkendall effect and their reduced thermal conductivities. CrystEngComm, 2014, 16, 3507-3514.	2.6	13
34	Synthesis of NaYF4:Eu3+/Tb3+ nanostructures with diverse morphologies and their size- and morphology-dependent photoluminescence. CrystEngComm, 2013, 15, 8262.	2.6	18
35	Mesoporous lanthanum phosphate nanostructures containing H3PO4 as superior electrolyte for PEM fuel cells. RSC Advances, 2013, 3, 21928.	3.6	9
36	Nafion–Carbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Functional Materials, 2010, 20, 4394-4399.	14.9	99