
Kristine E Yoder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5076117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics. Molecular and Cellular Biology, 2007, 27, 7028-7040.	2.3	327
2	Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO Journal, 2001, 20, 3272-3281.	7.8	313
3	Molecular Phylogenetic Analysis of Cyclospora, the Human Intestinal Pathogen, Suggests that It Is Closely Related to Eimeria Species. Journal of Infectious Diseases, 1996, 173, 440-445.	4.0	199
4	Repair of Gaps in Retroviral DNA Integration Intermediates. Journal of Virology, 2000, 74, 11191-11200.	3.4	180
5	Alterations of the Tumor Suppressor Gene Parkin in Non-Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10, 2720-2724.	7.0	105
6	Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Scientific Reports, 2016, 6, 29530.	3.3	85
7	Retroviral cDNA Integration: Stimulation by HMG I Family Proteins. Journal of Virology, 2000, 74, 10965-10974.	3.4	80
8	The DNA repair genes XPB and XPD defend cells from retroviral infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4622-4627.	7.1	61
9	Sequence variability in the first internal transcribed spacer region within and among Cyclospora species is consistent with polyparasitism. International Journal for Parasitology, 2001, 31, 1475-1487.	3.1	60
10	The <i>BCSC-1</i> locus at chromosome 11q23-q24 is a candidate tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11517-11522.	7.1	47
11	Lethal Invasive Cestodiasis in Immunosuppressed Patients. Journal of Infectious Diseases, 2003, 187, 1962-1966.	4.0	45
12	siRNA Screening of a Targeted Library of DNA Repair Factors in HIV Infection Reveals a Role for Base Excision Repair in HIV Integration. PLoS ONE, 2011, 6, e17612.	2.5	45
13	The Base Excision Repair Pathway Is Required for Efficient Lentivirus Integration. PLoS ONE, 2011, 6, e17862.	2.5	38
14	Defining the salt effect on human RAD51 activities. DNA Repair, 2006, 5, 718-730.	2.8	31
15	Retroviral intasomes search for a target DNA by 1D diffusion which rarely results in integration. Nature Communications, 2016, 7, 11409.	12.8	29
16	Evidence that hMLH3 functions primarily in meiosis and in hMSH2-hMSH3 mismatch repair. Cancer Biology and Therapy, 2009, 8, 1411-1420.	3.4	24
17	Widespread nuclease contamination in commonly used oxygen-scavenging systems. Nature Methods, 2015, 12, 901-902.	19.0	24
18	CRISPR/Cas9 Genome Editing to Disable the Latent HIV-1 Provirus. Frontiers in Microbiology, 2018, 9, 3107.	3.5	24

KRISTINE E YODER

#	Article	IF	CITATIONS
19	Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Frontiers in Molecular Biosciences, 2021, 8, 662331.	3.5	16
20	Absence of Kaposi's Sarcoma–Associated Herpesvirus DNA in Bacillary Angiomatosisâ€Peliosis Lesions. Journal of Infectious Diseases, 1999, 180, 1386-1389.	4.0	12
21	PCR-based detection is unable to consistently distinguish HIV 1LTR circles. Journal of Virological Methods, 2006, 138, 201-206.	2.1	12
22	Repair of Oxidative DNA Base Damage in the Host Genome Influences the HIV Integration Site Sequence Preference. PLoS ONE, 2014, 9, e103164.	2.5	12
23	Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. Journal of Virology, 2016, 90, 8036-8046.	3.4	11
24	Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Analytical Biochemistry, 2018, 556, 78-84.	2.4	11
25	Real-time quantitative PCR and fast QPCR have similar sensitivity and accuracy with HIV cDNA late reverse transcripts and 2-LTR circles. Journal of Virological Methods, 2008, 153, 253-256.	2.1	10
26	XPB mediated retroviral cDNA degradation coincides with entry to the nucleus. Virology, 2011, 410, 291-298.	2.4	10
27	Assembly and Purification of Prototype Foamy Virus Intasomes. Journal of Visualized Experiments, 2018, , .	0.3	10
28	Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. Journal of Virological Methods, 2016, 235, 134-138.	2.1	9
29	Detection and Removal of Nuclease Contamination During Purification of Recombinant Prototype Foamy Virus Integrase. Journal of Visualized Experiments, 2017, , .	0.3	9
30	Nucleosome DNA unwrapping does not affect prototype foamy virus integration efficiency or site selection. PLoS ONE, 2019, 14, e0212764.	2.5	8
31	Prototype foamy virus intasome aggregation is mediated by outer protein domains and prevented by protocatechuic acid. Scientific Reports, 2019, 9, 132.	3.3	7
32	CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Frontiers in Cellular and Infection Microbiology, 2020, 10, 580371.	3.9	7
33	Prototype foamy virus integrase is promiscuous for target choice. Biochemical and Biophysical Research Communications, 2018, 503, 1241-1246.	2.1	6
34	Retroviral prototype foamy virus intasome binding to a nucleosome target does not determine integration efficiency. Journal of Biological Chemistry, 2021, 296, 100550.	3.4	5
35	A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virologica, 2019, 63, 129-138.	0.8	3
36	Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases. Biomolecules, 2021, 11, 1910.	4.0	3

#	Article	IF	CITATIONS
37	Expression and Purification of Nuclease-Free Oxygen Scavenger Protocatechuate 3,4-Dioxygenase. Journal of Visualized Experiments, 2019, , .	0.3	2
38	Absence of LEDGF/p75 Expression in Astrocytes May Affect HIV-1 Integration Efficiency. Molecular Genetics, Microbiology and Virology, 2019, 34, 81-83.	0.3	0