
Aristotelis Xenakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 103-114.	4.3	132
2	Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. Journal of Molecular Liquids, 2018, 268, 734-742.	4.9	95
3	Kinetic study of lipase catalyzed esterification reactions in water-in-oil microemulsions. Biotechnology and Bioengineering, 1993, 42, 931-937.	3.3	87
4	Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 130-136.	4.7	74
5	Biocompatible Microemulsions Based on Limonene:  Formulation, Structure, and Applications. Langmuir, 2008, 24, 3380-3386.	3.5	69
6	Colloidal structures in natural oils. Current Opinion in Colloid and Interface Science, 2010, 15, 55-60.	7.4	69
7	Microemulsion-based organogels as matrices for lipase immobilization. Biotechnology Advances, 2010, 28, 395-406.	11.7	62
8	Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids and Surfaces B: Biointerfaces, 2018, 161, 219-227.	5.0	62
9	Olive Oil Microemulsions:Â Enzymatic Activities and Structural Characteristics. Langmuir, 2007, 23, 2071-2077.	3.5	55
10	Lecithin Organogels Used as Bioactive Compounds Carriers. A Microdomain Properties Investigation. Langmuir, 2007, 23, 4438-4447.	3.5	49
11	Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 36, 182-193.	3.2	46
12	Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. Nanomaterials, 2020, 10, 2464.	4.1	46
13	Characterization of a 13-lipoxygenase from virgin olive oil and oil bodies of olive endosperms. Lipid - Fett, 1998, 100, 554-560.	0.4	42
14	Biocatalysis using microemulsion-based polymer gels containing lipase. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 399-406.	1.8	42
15	Characterization of cephalexin loaded nonionic microemulsions. Journal of Colloid and Interface Science, 2011, 361, 115-121.	9.4	41
16	Biocompatible Colloidal Dispersions as Potential Formulations of Natural Pyrethrins: A Structural and Efficacy Study. Langmuir, 2015, 31, 5722-5730.	3.5	39
17	Enzymatic reactions in structured surfactant-free microemulsions. Current Opinion in Colloid and Interface Science, 2016, 22, 41-45.	7.4	39
18	Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110974.	5.0	39

ARISTOTELIS XENAKIS

#	Article	IF	CITATIONS
19	Use of microemulsions as liquid membranes. Improved kinetics of solute transfer at interfaces. Faraday Discussions of the Chemical Society, 1984, 77, 115.	2.2	35
20	Drug nanocarriers for cancer chemotherapy based on microemulsions: The case of Vemurafenib analog PLX4720. Colloids and Surfaces B: Biointerfaces, 2017, 154, 350-356.	5.0	34
21	Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: The case of essential oils. Food Chemistry, 2019, 278, 415-423.	8.2	31
22	Spectroscopic and catalytic studies of lipases in ternary hexane–1-propanol–water surfactantless microemulsion systems. Colloids and Surfaces B: Biointerfaces, 2006, 47, 1-9.	5.0	29
23	Antioxidant Properties of Fruits and Vegetables Shots and Juices: An Electron Paramagnetic Resonance Study. Food Biophysics, 2008, 3, 48-53.	3.0	29
24	Reverse Micelles As Antioxidant Carriers: An Experimental and Molecular Dynamics Study. Langmuir, 2017, 33, 5077-5085.	3.5	29
25	A new homogeneous enzyme immunoassay for thyroxine using glycogen phosphorylase b–thyroxine conjugates. Clinica Chimica Acta, 2001, 308, 99-106.	1.1	28
26	Activity and Stability Studies Of Mucor miehei Lipase Immobilized in Novel Microemulsion-based Organogels. Biocatalysis and Biotransformation, 2002, 20, 319-327.	2.0	28
27	Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect?. European Journal of Pharmaceutical Sciences, 2020, 142, 105135.	4.0	28
28	Biocompatible nanodispersions as delivery systems of food additives: A structural study. Food Research International, 2013, 54, 1448-1454.	6.2	27
29	Microemulsion versus emulsion as effective carrier of hydroxytyrosol. Colloids and Surfaces B: Biointerfaces, 2016, 137, 146-151.	5.0	27
30	Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique. Food and Function, 2016, 7, 2258-2269.	4.6	25
31	Structure and Dynamics of Veiled Virgin Olive Oil: Influence of Production Conditions and Relation to its Antioxidant Capacity. Food Biophysics, 2013, 8, 112-121.	3.0	24
32	Proteolytic activity in various water-in-oil microemulsions as related to the polarity of the reaction medium. Colloids and Surfaces B: Biointerfaces, 1993, 1, 295-303.	5.0	23
33	Oxidation Catalysis by Enzymes in Microemulsions. Catalysts, 2017, 7, 52.	3.5	23
34	Partial purification and characterization of peroxidase from olives (Olea europaea cv. Koroneiki). European Food Research and Technology, 2009, 228, 487-495.	3.3	21
35	Reverse micelles as nanocarriers of nisin against foodborne pathogens. Food Chemistry, 2018, 255, 97-103.	8.2	21
36	Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. Journal of Molecular Liquids, 2018, 272, 746-758.	4.9	20

#	Article	IF	CITATIONS
37	Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. Journal of Molecular Liquids, 2020, 301, 112479.	4.9	19
38	Electric percolation of enzyme-containing microemulsions. Langmuir, 1993, 9, 912-915.	3.5	18
39	Microemulsions as Potential Carriers of Nisin: Effect of Composition on Structure and Efficacy. Langmuir, 2016, 32, 8988-8998.	3.5	18
40	Structural and Dynamic Properties of Lecithin–Alcohol Based w/o Microemulsions: A Luminescence Quenching Study. Journal of Colloid and Interface Science, 1997, 194, 326-331.	9.4	17
41	Formulation and Structural Study of a Biocompatible Water-in-Oil Microemulsion as an Appropriate Enzyme Carrier: The Model Case of Horseradish Peroxidase. Langmuir, 2019, 35, 150-160.	3.5	17
42	Biocolloids Based on Amphiphilic Block Copolymers as a Medium for Enzyme Encapsulation. Journal of Physical Chemistry B, 2014, 118, 9808-9816.	2.6	16
43	Chemo-enzymatic epoxidation catalyzed by C. antarctica lipase immobilized in microemulsion-based organogels. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 89-94.	1.8	16
44	Hydroxytyrosol encapsulated in biocompatible water-in-oil microemulsions: How the structure affects in vitro absorption. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110482.	5.0	16
45	Olive oil microemulsions as a biomimetic medium for enzymatic studies: Oxidation of oleuropein. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 335-340.	1.9	15
46	Influence of Nanoreactor Environment and Substrate Location on the Activity of Horseradish Peroxidase in Olive Oil Based Water-in-Oil Microemulsions. Langmuir, 2011, 27, 2692-2700.	3.5	15
47	Food grade water-in-oil microemulsions as replacement of oil phase to help process and stabilization of whipped cream. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 69-76.	4.7	15
48	Lipase factor (LF) as a characterization parameter to explain the catalytic activity of crude lipases from Candida rugosa, free or immobilized in microemulsion-based organogels. Enzyme and Microbial Technology, 2004, 35, 277-283.	3.2	14
49	Chitosan hydrogels: A new and simple matrix for lipase catalysed biosyntheses. Molecular Catalysis, 2018, 445, 206-212.	2.0	14
50	Antioxidant activity of polar extracts from olive oil and olive mill wastewaters: an EPR and photometric study. European Journal of Lipid Science and Technology, 2005, 107, 513-520.	1.5	13
51	Virgin olive oil: Free radical production studied with spin-trapping electron paramagnetic resonance spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 1121-1125.	1.9	11
52	Development and characterization of a digestion model based on olive oil microemulsions. European Journal of Lipid Science and Technology, 2013, 115, 601-611.	1.5	11
53	Determination of nicotine and cotinine in meconium from Greek neonates and correlation with birth weight and gestational age at birth. Chemosphere, 2015, 119, 1200-1207.	8.2	11
54	β-Cyclodextrin as carrier of novel antioxidants: A structural and efficacy study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125262.	4.7	11

ARISTOTELIS XENAKIS

#	Article	IF	CITATIONS
55	In Vitro Evaluation of Curcumin- and Quercetin-Loaded Nanoemulsions for Intranasal Administration: Effect of Surface Charge and Viscosity. Pharmaceutics, 2022, 14, 194.	4.5	11
56	Nanoencapsulated Lecitase Ultra and Thermomyces lanuginosus Lipase, a Comparative Structural Study. Langmuir, 2016, 32, 6746-6756.	3.5	10
57	Oxidation of oleuropein studied by EPR and spectrophotometry. European Journal of Lipid Science and Technology, 2008, 110, 149-157.	1.5	9
58	Microemulsion-Based Organogels as an Efficient Support for Lipase-Catalyzed Reactions under Continuous-Flow Conditions. Organic Process Research and Development, 2014, 18, 1372-1376.	2.7	9
59	Spin-label studies of glycogen phosphorylase hosted in microemulsion droplets. Biochemical and Biophysical Research Communications, 1987, 148, 1151-1157.	2.1	7
60	Homogeneous Enzyme Immunoassay for Triiodothyronine in Serum. Clinical Chemistry, 2001, 47, 569-574.	3.2	7
61	Immobilization and activity of Rhizomucor miehei lipase. Effect of the matrix properties prepared from nonionic fluorinated surfactants. Process Biochemistry, 2010, 45, 39-46.	3.7	7
62	Oil-In-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics, 2018, 3, 13.	3.3	6
63	Low shear-rate process to obtain transparent W/O fine emulsions as functional foods. Food Research International, 2014, 62, 533-540.	6.2	5
64	Nanocarriers for effective drug delivery. , 2020, , 315-341.		5
65	Recent progress on nano-carriers fabrication for food applications with special reference to olive oil-based systems. Current Opinion in Food Science, 2022, 43, 146-154.	8.0	5
66	Structural Study of (Hydroxypropyl)Methyl Cellulose Microemulsion-Based Gels Used for Biocompatible Encapsulations. Nanomaterials, 2020, 10, 2204.	4.1	4
67	(Hydroxypropyl)methyl cellulose-chitosan film as a matrix for lipase immobilization: Operational and morphological study. Molecular Catalysis, 2022, 522, 112252.	2.0	4
68	Encapsulation of food ingredients by microemulsions. , 2019, , 129-149.		3
69	Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics, 2021, 6, 10.	3.3	3
70	Development and Evaluation of Liposomal Nanoparticles Incorporating Dimethoxycurcumin. In vitro Toxicity and Permeability Studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129223.	4.7	3
71	Enzymatic modification of triglycerides in conventional and surfactant-free microemulsions and in olive oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129170.	4.7	2
72	Antioxidant Activity of Methyl Caffeateâ€Enriched Olive Oils: From Extra Virgin Olive Oil to Extra Virgin Olive Oilâ€Based Microemulsions. European Journal of Lipid Science and Technology, 2022, 124, .	1.5	2

#	Article	IF	CITATIONS
73	Addendum: Oil-in-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics 2018, 3, 13. Biomimetics, 2018, 3, 33.	3.3	1
74	Short-wave and near infrared π-conjugated polymers hosted in a biocompatible microemulsion: a pioneering approach for photoacoustic contrast agents. Journal of Materials Chemistry B, 2022, , .	5.8	1
75	Food Soft Nano-Dispersions for Bioactive Delivery: General Concepts and Applications. , 2019, , 701-707.		Ο
76	Biocatalytic Studies in Microemulsions and Related Systems. Statistical Science and Interdisciplinary Research, 2012, , 199-206.	0.0	0