
Houman Savoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075007/publications.pdf Version: 2024-02-01

Ησυμμανι δανου

#	Article	IF	CITATIONS
1	Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydrate Polymers, 2022, 281, 119045.	5.1	45
2	Latest Advances in 3D Bioprinting of Cardiac Tissues. Advanced Materials Technologies, 2022, 7, .	3.0	17
3	Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. , 2022, 138, 212916.		11
4	Toward Hierarchical Assembly of Aligned Cell Sheets into a Conical Cardiac Ventricle Using Microfabricated Elastomers. Advanced Biology, 2022, 6, .	1.4	11
5	Towards chamber specific heart-on-a-chip for drug testing applications. Advanced Drug Delivery Reviews, 2020, 165-166, 60-76.	6.6	52
6	Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features. ACS Applied Materials & Interfaces, 2020, 12, 9080-9089.	4.0	40
7	3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding. ACS Biomaterials Science and Engineering, 2020, 6, 1333-1343.	2.6	40
8	Oneâ€₽ot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs. Advanced Healthcare Materials, 2019, 8, e1900245.	3.9	23
9	Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198, 3-26.	5.7	149
10	Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Frontiers in Bioengineering and Biotechnology, 2018, 6, 86.	2.0	89
11	Separation of H2S from CH4 by polymeric membranes at different H2S concentrations. International Journal of Environmental Science and Technology, 2017, 14, 375-384.	1.8	19
12	Combining Electrospun Fiber Mats and Bioactive Coatings for Vascular Graft Prostheses. Biomacromolecules, 2017, 18, 303-310.	2.6	29
13	A Facile Approach for the Mass Production of Submicro/Micro Poly (Lactic Acid) Fibrous Mats and Their Cytotoxicity Test towards Neural Stem Cells. BioMed Research International, 2016, 2016, 1-12.	0.9	19
14	In Vitro and Pilot In Vivo Evaluation of a Bioactive Coating for Stent Grafts Based on Chondroitin Sulfate and Epidermal Growth Factor. Journal of Vascular and Interventional Radiology, 2016, 27, 753-760.e3.	0.2	9
15	3D Electrospun Scaffolds for Vascular Graft Applications: Fine Tuning of Properties by Plasma-Assisted Etching and Coating. , 2016, , .		1
16	Nitrogenâ€Rich Plasma Polymer Coatings for Biomedical Applications: Stability, Mechanical Properties and Adhesion Under Dry and Wet Conditions. Plasma Processes and Polymers, 2015, 12, 882-895.	1.6	23
17	Plasma-Etching for Controlled Modification of Structural and Mechanical Properties of Electrospun PET Scaffolds. Plasma Processes and Polymers, 2015, 12, 314-327.	1.6	27
18	Transdermal Nitroglycerin Delivery Using Acrylic Matrices: Design, Formulation, and In Vitro Characterization. ISRN Pharmaceutics, 2014, 2014, 1-9.	1.0	5

#	Article	IF	CITATIONS
19	Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromolecular Bioscience, 2014, 14, 1084-1095.	2.1	50

20 Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

21	Novel surface modifying macromolecules (SMMs) blended polysulfone gas separation membranes by phase inversion technique. Journal of Applied Polymer Science, 2012, 124, 2287-2299.	1.3	17
22	Influence of novel surface modifying macromolecules and coagulation media on the gas permeation properties of different polymeric gas separation membranes. Journal of Applied Polymer Science, 2012, 124, 2300-2310.	1.3	6
23	Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes. Korean Journal of Chemical Engineering, 2011, 28, 902-913.	1.2	26
24	Modeling and simulation of tanks-in-series airlift bioreactors for production of lactic acid by fermentation. Korean Journal of Chemical Engineering, 2011, 28, 1727-1735.	1.2	3
25	The effect of ethane on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications. Korean Journal of Chemical Engineering, 2010, 27, 1876-1881.	1.2	4