Houman Savoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5075007/publications.pdf

Version: 2024-02-01

25 748 16 24 g-index

28 28 28 1090

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198, 3-26.	5.7	149
2	Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Frontiers in Bioengineering and Biotechnology, 2018, 6, 86.	2.0	89
3	Towards chamber specific heart-on-a-chip for drug testing applications. Advanced Drug Delivery Reviews, 2020, 165-166, 60-76.	6.6	52
4	Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromolecular Bioscience, 2014, 14, 1084-1095.	2.1	50
5	Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydrate Polymers, 2022, 281, 119045.	5.1	45
6	Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9080-9089.	4.0	40
7	3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding. ACS Biomaterials Science and Engineering, 2020, 6, 1333-1343.	2.6	40
8	Combining Electrospun Fiber Mats and Bioactive Coatings for Vascular Graft Prostheses. Biomacromolecules, 2017, 18, 303-310.	2.6	29
9	Plasma-Etching for Controlled Modification of Structural and Mechanical Properties of Electrospun PET Scaffolds. Plasma Processes and Polymers, 2015, 12, 314-327.	1.6	27
10	Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes. Korean Journal of Chemical Engineering, 2011, 28, 902-913.	1.2	26
11	Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene) Tj ETQq $1\ 1$	0.784314	1 rgBT /Over <mark>lo</mark>
12	Nitrogenâ∈Rich Plasma Polymer Coatings for Biomedical Applications: Stability, Mechanical Properties and Adhesion Under Dry and Wet Conditions. Plasma Processes and Polymers, 2015, 12, 882-895.	1.6	23
13	Oneâ€Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs. Advanced Healthcare Materials, 2019, 8, e1900245.	3.9	23
14	A Facile Approach for the Mass Production of Submicro/Micro Poly (Lactic Acid) Fibrous Mats and Their Cytotoxicity Test towards Neural Stem Cells. BioMed Research International, 2016, 2016, 1-12.	0.9	19
15	Separation of H2S from CH4 by polymeric membranes at different H2S concentrations. International Journal of Environmental Science and Technology, 2017, 14, 375-384.	1.8	19
16	Novel surface modifying macromolecules (SMMs) blended polysulfone gas separation membranes by phase inversion technique. Journal of Applied Polymer Science, 2012, 124, 2287-2299.	1.3	17
17	Latest Advances in 3D Bioprinting of Cardiac Tissues. Advanced Materials Technologies, 2022, 7, .	3.0	17
18	Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. , 2022, 138, 212916.		11

#	Article	IF	CITATIONS
19	Toward Hierarchical Assembly of Aligned Cell Sheets into a Conical Cardiac Ventricle Using Microfabricated Elastomers. Advanced Biology, 2022, 6, .	1.4	11
20	In Vitro and Pilot In Vivo Evaluation of a Bioactive Coating for Stent Grafts Based on Chondroitin Sulfate and Epidermal Growth Factor. Journal of Vascular and Interventional Radiology, 2016, 27, 753-760.e3.	0.2	9
21	Influence of novel surface modifying macromolecules and coagulation media on the gas permeation properties of different polymeric gas separation membranes. Journal of Applied Polymer Science, 2012, 124, 2300-2310.	1.3	6
22	Transdermal Nitroglycerin Delivery Using Acrylic Matrices: Design, Formulation, and In Vitro Characterization. ISRN Pharmaceutics, 2014, 2014, 1-9.	1.0	5
23	The effect of ethane on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications. Korean Journal of Chemical Engineering, 2010, 27, 1876-1881.	1.2	4
24	Modeling and simulation of tanks-in-series airlift bioreactors for production of lactic acid by fermentation. Korean Journal of Chemical Engineering, 2011, 28, 1727-1735.	1.2	3
25	3D Electrospun Scaffolds for Vascular Graft Applications: Fine Tuning of Properties by Plasma-Assisted Etching and Coating. , 2016, , .		1