W Gerald Teague

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5074976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Childhood Asthma Risk with Moderate Exercise: Good News for Most!. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 240-241.	2.0	3
2	Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 686-693.e3.	1.5	31
3	The Added Burden of Allergen Sensitization Among Children with Severe or Poorly Controlled Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 853-861.e5.	2.0	7
4	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	2.5	14
5	Measures of ventilation heterogeneity mapped with hyperpolarized heliumâ€3 MRI demonstrate a T2â€high phenotype in asthma. Pediatric Pulmonology, 2021, 56, 1440-1448.	1.0	4
6	Novel Treatment-Refractory Preschool Wheeze Phenotypes Identified by Cluster Analysis of Lung Lavage Constituents. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2792-2801.e4.	2.0	7
7	Love and a Cough Cannot Be Hid. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1638-1639.	2.0	0
8	PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. Journal of Allergy and Clinical Immunology, 2021, 147, 1594-1601.	1.5	27
9	Hyperpolarized noble gas MRI of the chest in asthma: No longer an answer in need of a question. Journal of Allergy and Clinical Immunology, 2021, 147, 2067-2068.	1.5	1
10	Prevention and Outpatient Treatment of Asthma Exacerbations in Children. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2567-2576.	2.0	16
11	Interleukin-5 receptor alpha (CD125) expression on human blood and lung neutrophils. Annals of Allergy, Asthma and Immunology, 2021, 128, 53-60.e3.	0.5	2
12	Disparate diagnostic accuracy of lung function tests as predictors of poor asthma control in children. Journal of Asthma, 2020, 57, 327-334.	0.9	10
13	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	1.5	45
14	Development and initial validation of the Asthma Severity Scoring System (ASSESS). Journal of Allergy and Clinical Immunology, 2020, 145, 127-139.	1.5	19
15	Bronchoscopy in severe childhood asthma: Irresponsible or irreplaceable?. Pediatric Pulmonology, 2020, 55, 795-802.	1.0	11
16	Pediatric Severe Asthma in the Era of Biologic Treatments. Pediatric, Allergy, Immunology, and Pulmonology, 2020, 33, 118-120.	0.3	0
17	The precision interventions for severe and/or exacerbation-prone asthma (PrecISE) adaptive platform trial: statistical considerations. Journal of Biopharmaceutical Statistics, 2020, 30, 1026-1037.	0.4	11
18	<i>HSD3B1</i> genotype identifies glucocorticoid responsiveness in severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2187-2193.	3.3	27

W GERALD TEAGUE

#	Article	IF	CITATIONS
19	Understanding the asthmatic response to an experimental rhinovirus infection: Exploring the effects of blocking IgE. Journal of Allergy and Clinical Immunology, 2020, 146, 545-554.	1.5	36
20	Expression of IL-5 receptor alpha by murine and human lung neutrophils. PLoS ONE, 2019, 14, e0221113.	1.1	32
21	Disparate Eosinophilic Phenotypes with Age: Impact on Eligibility for Anti–IL-5 Therapies in Severe Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2697-2698.	2.0	0
22	Low Serum IgC: A Novel Predictor of Virus-Induced Asthma Exacerbations?. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1514-1515.	2.0	0
23	Tiotropium: An Effective Bronchodilator in Severe Asthma Independent of Type 2 Inflammation. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2296-2297.	2.0	3
24	Not One More Life: A Health and Faith Partnership Engaging At-Risk African Americans with Asthma in Atlanta. Annals of the American Thoracic Society, 2019, 16, 421-425.	1.5	8
25	Lung Lavage Granulocyte Patterns and Clinical Phenotypes in Children with Severe, Therapy-Resistant Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1803-1812.e10.	2.0	45
26	Challenges in assessing the efficacy of systemic corticosteroids for severe wheezing episodes in preschool children. Journal of Allergy and Clinical Immunology, 2019, 143, 1934-1937.e4.	1.5	2
27	Blood Eosinophilia May Not Adequately Estimate Lung Fluid Eosinophilia in Childhood Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2497-2498.	2.0	5
28	Life Cycle of Childhood Asthma. Clinics in Chest Medicine, 2019, 40, 125-147.	0.8	10
29	Does Obesity Increase Respiratory Tract Infections in Patients with Asthma?. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 954-961.e6.	2.0	12
30	Racial disparities in asthma-related health care use in the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2019, 143, 2052-2061.	1.5	65
31	The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight, 2019, 4, .	2.3	23
32	Clinical phenotypes of severe asthma: children. , 2019, , 64-81.		0
33	The pediatric asthma yardstick. Annals of Allergy, Asthma and Immunology, 2018, 120, 559-579.e11.	0.5	33
34	Step-Down Therapy for Asthma Well Controlled on Inhaled Corticosteroid and Long-Acting Beta-Agonist: A Randomized Clinical Trial. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 633-643.e1.	2.0	19
35	TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. Journal of Allergy and Clinical Immunology, 2018, 141, 2048-2060.e13.	1.5	103
36	Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulmonary Medicine, 2018, 18, 58.	0.8	74

3

W GERALD TEAGUE

#	Article	IF	CITATIONS
37	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	2.0	210
38	Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clinical Imaging, 2017, 45, 105-110.	0.8	31
39	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	2.5	87
40	Up in Smoke: Accelerated Loss of Lung Function in Two Clusters of Smokers Identified in a Longitudinal Cohort Study of Adult-Onset Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 979-980.	2.0	5
41	Clinical correlates of lung ventilation defects in asthmatic children. Journal of Allergy and Clinical Immunology, 2016, 137, 789-796.e7.	1.5	43
42	Gastro-oesophageal reflux and worse asthma control in obese children: a case of symptom misattribution?. Thorax, 2016, 71, 238-246.	2.7	24
43	Number, activation, and differentiation of circulating fibrocytes correlate with asthma severity. Journal of Allergy and Clinical Immunology, 2016, 137, 750-757.e3.	1.5	43
44	Impact of Age and Sex on Outcomes and Hospital Cost of Acute Asthma in the United States, 2011-2012. PLoS ONE, 2016, 11, e0157301.	1.1	57
45	Phenotype of asthmatics with increased airway <i>S</i> -nitrosoglutathione reductase activity. European Respiratory Journal, 2015, 45, 87-97.	3.1	26
46	Lansoprazole Is Associated with Worsening Asthma Control in Children with the <i>CYP2C19</i> Poor Metabolizer Phenotype. Annals of the American Thoracic Society, 2015, 12, 878-885.	1.5	26
47	Prednisone for acute virus-associated wheeze in children: Panacea or one more brick in the wall?. Journal of Allergy and Clinical Immunology, 2015, 135, 699-700.	1.5	1
48	Asthma Is More Severe in Older Adults. PLoS ONE, 2015, 10, e0133490.	1.1	80
49	Clinical Implications of Having Reduced Mid Forced Expiratory Flow Rates (FEF25-75), Independently of FEV1, in Adult Patients with Asthma. PLoS ONE, 2015, 10, e0145476.	1.1	49
50	Ventilation heterogeneity in asthma. Journal of Asthma, 2014, 51, 677-684.	0.9	44
51	Validation and psychometric properties of the Asthma Control Questionnaire among children. Journal of Allergy and Clinical Immunology, 2014, 133, 91-97.e6.	1.5	48
52	International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal, 2014, 43, 343-373.	3.1	2,898
53	Exhaled Breath Condensate pH Does Not Discriminate Asymptomatic Gastroesophageal Reflux or the Response to Lansoprazole Treatment in Children with Poorly Controlled Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 579-586.e7.	2.0	14
54	Biologic Mechanisms of Environmental Tobacco Smoke in Children with Poorly Controlled Asthma: Results from a Multicenter Clinical Trial. Journal of Allergy and Clinical Immunology: in Practice, 2013, 1, 172-180.e2.	2.0	29

W GERALD TEAGUE

#	Article	IF	CITATIONS
55	Poor Asthma Control in Obese Children May Be Overestimated Because of Enhanced Perception of Dyspnea. Journal of Allergy and Clinical Immunology: in Practice, 2013, 1, 39-45.e2.	2.0	43
56	Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 356-362.	2.5	242
57	Heterogeneity of severe asthma in childhood: Confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2011, 127, 382-389.e13.	1.5	392
58	The molecular phenotype of severe asthma in children. Journal of Allergy and Clinical Immunology, 2010, 125, 851-857.e18.	1.5	142
59	Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 315-323.	2.5	1,820
60	Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma. PLoS ONE, 2010, 5, e11919.	1.1	38
61	Efficacy of Esomeprazole for Treatment of Poorly Controlled Asthma. New England Journal of Medicine, 2009, 360, 1487-1499.	13.9	357
62	Tablet and Inhaled Controller Medication Refill Frequencies in Children With Asthma. Journal of Pediatric Nursing, 2009, 24, 81-89.	0.7	15
63	Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress. Journal of Allergy and Clinical Immunology, 2009, 123, 146-152.e8.	1.5	162
64	Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. Journal of Allergy and Clinical Immunology, 2009, 124, 990-996.e9.	1.5	64
65	Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. Journal of Allergy and Clinical Immunology, 2008, 121, 1372-1378.e3.	1.5	136
66	Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. Journal of Applied Physiology, 2008, 104, 394-403.	1.2	270
67	Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2007, 119, 405-413.	1.5	838
68	Buffering airway acid decreases exhaled nitricÂoxide in asthma. Journal of Allergy and Clinical Immunology, 2006, 118, 817-822.	1.5	38
69	Features of severe asthma in school-age children: Atopy and increased exhaled nitric oxide. Journal of Allergy and Clinical Immunology, 2006, 118, 1218-1225.	1.5	185