Reinoud Gosens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5074325/publications.pdf

Version: 2024-02-01

109264 149623 3,948 108 35 56 citations h-index g-index papers 113 113 113 5366 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances, 2022, 8, eabj9949.	4.7	20
2	Pan-Phosphodiesterase Inhibitors Attenuate TGF-Î ² -Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals, 2022, 15, 423.	1.7	4
3	Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environmental Pollution, 2022, 305, 119292.	3.7	8
4	Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clinical Infectious Diseases, 2021, 73, e4039-e4046.	2.9	93
5	Prostaglandin D2: the end of a story or just the beginning?. Lancet Respiratory Medicine, the, 2021, 9, 2-3.	5.2	7
6	Rejuvenating old lungs: Ain't no tonic like a drop of retinoic. Thorax, 2021, 76, 428-429.	2.7	1
7	The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respiratory Research, 2021, 22, 48.	1.4	6
8	A synthetic peptide as an allosteric inhibitor of human arginase I and II. Molecular Biology Reports, 2021, 48, 1959-1966.	1.0	4
9	Mapping Arginase Expression with ¹⁸ F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids. Journal of Nuclear Medicine, 2021, 62, 1163-1170.	2.8	3
10	A unique small cell lung carcinoma disease progression model shows progressive accumulation of cancer stem cell properties and CD44 as a potential diagnostic marker. Lung Cancer, 2021, 154, 13-22.	0.9	7
11	The role of altered stem cell function in airway and alveolar repair and remodelling in COPD. , 2021, , 322-339.		3
12	Therapeutic Targeting of IL-11 for Chronic Lung Disease. Trends in Pharmacological Sciences, 2021, 42, 354-366.	4.0	12
13	D-dopachrome tautomerase contributes to lung epithelial repair via atypical chemokine receptor 3-dependent Akt signaling. EBioMedicine, 2021, 68, 103412.	2.7	22
14	How to get the most out of the ERS International Congress 2021 and an overview of the Early Career Member session. Breathe, 2021, 17, 210057.	0.6	0
15	National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health (BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 22-29.	1.4	2
16	Pharmacological Rationale for Targeting IL-17 in Asthma. Frontiers in Allergy, 2021, 2, 694514.	1.2	14
17	Human pluripotent stem cells for the modelling and treatment of respiratory diseases. European Respiratory Review, 2021, 30, 210042.	3.0	3
18	Repairing damaged lungs using regenerative therapy. Current Opinion in Pharmacology, 2021, 59, 85-94.	1.7	8

#	Article	IF	Citations
19	LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L641-L652.	1.3	9
20	Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorganic Chemistry, 2021, 117, 105409.	2.0	11
21	WNT Signalling in Lung Physiology and Pathology. Handbook of Experimental Pharmacology, 2021, 269, 305-336.	0.9	10
22	Success and continuous growth of the ERS clinical research collaborations. European Respiratory Journal, 2021, 58, 2102527.	3.1	7
23	Divergent effects of Wnt5b on IL-3- and GM-CSF-induced myeloid differentiation. Cellular Signalling, 2020, 67, 109507.	1.7	6
24	The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respiratory Medicine, the, 2020, 8, 1045-1056.	5.2	98
25	Wnt-5A/B Signaling in Hematopoiesis throughout Life. Cells, 2020, 9, 1801.	1.8	9
26	Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology, 2020, 35, 348-357.	1.6	5
27	<p>Two-Year Outcomes for the Double-Blind, Randomized, Sham-Controlled Study of Targeted Lung Denervation in Patients with Moderate to Severe COPD: AIRFLOW-2</p> . International Journal of COPD, 2020, Volume 15, 2807-2816.	0.9	16
28	Inhibition of LTÎ ² R signalling activates WNT-induced regeneration in lung. Nature, 2020, 588, 151-156.	13.7	81
29	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	3.1	17
30	A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF- \hat{l}^2 Signaling and Activation of cAMP/PKA Signaling. International Journal of Molecular Sciences, 2020, 21, 4008.	1.8	28
31	Wnt/ \hat{l}^2 -catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells, 2020, 38, 1467-1478.	1.4	46
32	Cholinergic neuroplasticity in asthma driven by TrkB signaling. FASEB Journal, 2020, 34, 7703-7717.	0.2	17
33	Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Scientific Reports, 2020, 10, 6754.	1.6	14
34	Rho-Kinase $1/2$ Inhibition Prevents Transforming Growth Factor- \hat{l}^2 -Induced Effects on Pulmonary Remodeling and Repair. Frontiers in Pharmacology, 2020, 11 , 609509.	1.6	13
35	Small airway hyperresponsiveness in COPD: relationship between structure and function in lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L537-L546.	1.3	26
36	The Enhanced Adhesion of Eosinophils Is Associated with Their Prolonged Viability and Pro-Proliferative Effect in Asthma. Journal of Clinical Medicine, 2019, 8, 1274.	1.0	8

#	Article	IF	CITATIONS
37	Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells, 2019, 8, 1147.	1.8	49
38	Second M 3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. British Journal of Pharmacology, 2019, 176, 2864-2876.	2.7	7
39	TGF- \hat{l}^2 activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L14-L28.	1.3	53
40	Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax, 2019, 74, 890-897.	2.7	25
41	Mouse Lung Tissue Slice Culture. Methods in Molecular Biology, 2019, 1940, 297-311.	0.4	13
42	Hot off the press: downregulation of PRMT1 for long-lasting effects of bronchial thermoplasty. European Respiratory Journal, 2019, 54, 1901898.	3.1	0
43	Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. European Journal of Pharmacology, 2019, 865, 172779.	1.7	13
44	Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochemical Pharmacology, 2019, 160, 121-133.	2.0	99
45	WNT receptor signalling in lung physiology and pathology. , 2018, 187, 150-166.		44
46	Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. , 2018, 185, 155-169.		24
47	Cigarette smoke upâ€regulates <scp>PDE3</scp> and <scp>PDE4</scp> to decrease <scp>cAMP</scp> in airway cells. British Journal of Pharmacology, 2018, 175, 2988-3006.	2.7	31
48	PDE8: A Novel Target in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 426-427.	1.4	6
49	Research highlights from the 2017 ERS International Congress: airway diseases in focus. ERJ Open Research, 2018, 4, 00163-2017.	1.1	5
50	Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discovery Today, 2018, 23, 49-62.	3.2	17
51	Paving the Rho in cancer metastasis: Rho GTPases and beyond. , 2018, 183, 1-21.		132
52	Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine, 2018, 36, 461-474.	2.7	64
53	International research collaboration: The way forward. Respirology, 2018, 23, 654-655.	1.3	4
54	microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. European Respiratory Journal, 2018, 52, 1701556.	3.1	37

#	Article	IF	Citations
55	Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Current Opinion in Pharmacology, 2018, 40, 126-133.	1.7	36
56	WNT-5A regulates TGF- \hat{l}^2 -related activities in liver fibrosis. American Journal of Physiology - Renal Physiology, 2017, 312, G219-G227.	1.6	47
57	The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L507-L515.	1.3	15
58	HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Scientific Reports, 2017, 7, 45047.	1.6	69
59	Endothelial follistatinâ€likeâ€1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling. Pulmonary Circulation, 2017, 7, 219-231.	0.8	13
60	β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. Frontiers in Immunology, 2017, 8, 1086.	2.2	10
61	Author response to letter to editor: Hyperinsulinemia adversely affects lung structure and function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L183-L184.	1.3	1
62	Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Frontiers in Physiology, 2016, 7, 309.	1.3	21
63	Hyperinsulinemia adversely affects lung structure and function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L837-L845.	1.3	68
64	Selective targeting of CREBâ \in binding protein/ \hat{l}^2 â \in catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. British Journal of Pharmacology, 2016, 173, 3327-3341.	2.7	23
65	Cooperative signaling by TGF-β1 and WNT-11 drives sm-α-actin expression in smooth muscle via Rho kinase-actin-MRTF-A signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L529-L537.	1.3	22
66	Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Scientific Reports, 2016, 6, 30676.	1.6	19
67	Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1166-L1176.	1.3	35
68	Eosinophils enhance WNT-5a and TGF- \hat{l}^21 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma. BMC Pulmonary Medicine, 2016, 16, 94.	0.8	33
69	A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax, 2016, 71, 312-322.	2.7	21
70	HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF- \hat{l}^9 B p65 transcriptional activity. Biochemical Pharmacology, 2016, 108, 58-74.	2.0	105
71	TGFâ€Î²â€induced profibrotic signaling is regulated in part by the WNT receptor Frizzledâ€8. FASEB Journal, 2016, 30, 1823-1835.	0.2	56
72	Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma. Respiratory Research, 2016, 17, 13.	1.4	38

#	Article	IF	Citations
73	WNT-5A: signaling and functions in health and disease. Cellular and Molecular Life Sciences, 2016, 73, 567-587.	2.4	124
74	Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model. Frontiers in Physiology, 2016, 7, 657.	1.3	24
75	Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma. Frontiers in Physiology, 2016, 7, 680.	1.3	16
76	Epac1 links prostaglandin E2 to \hat{l}^2 -catenin-dependent transcription during epithelial-to-mesenchymal transition. Oncotarget, 2016, 7, 46354-46370.	0.8	21
77	Therapeutic potential of soluble guanylate cyclase modulators in neonatal chronic lung disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1037-L1040.	1.3	10
78	Airway and Extracellular Matrix Mechanics in COPD. Frontiers in Physiology, 2015, 6, 346.	1.3	53
79	Bronchoconstriction and Airway Biology. Chest, 2015, 147, 798-803.	0.4	51
80	Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends in Pharmacological Sciences, 2015, 36, 164-171.	4.0	119
81	Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax, 2015, 70, 668-676.	2.7	46
82	Anti-inflammatory effects of targeted lung denervation in patients with COPD. European Respiratory Journal, 2015, 46, 1489-1492.	3.1	33
83	Muscarinic M ₃ receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L96-L103.	1.3	25
84	Airway Smooth Muscle and Fibroblast Biology still a leading research focus for Young Investigators in the field. Pulmonary Pharmacology and Therapeutics, 2014, 29, 91-92.	1.1	0
85	Airway smooth muscle in asthma: Linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulmonary Pharmacology and Therapeutics, 2014, 29, 96-107.	1.1	76
86	TGF-Î ² -Activated Kinase 1 (TAK1) Signaling Regulates TGF-Î ² -Induced WNT-5A Expression in Airway Smooth Muscle Cells via Sp1 and Î ² -Catenin. PLoS ONE, 2014, 9, e94801.	1.1	36
87	Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: I. Effects on lung remodeling and pathology. Respiratory Research, 2013, 14, 113.	1.4	17
88	Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. European Respiratory Journal, 2013, 42, 1677-1688.	3.1	44
89	Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease. Thorax, 2013, 68, 709-716.	2.7	82
90	Bronchoconstriction Induces TGF- \hat{l}^2 Release and Airway Remodelling in Guinea Pig Lung Slices. PLoS ONE, 2013, 8, e65580.	1.1	58

#	Article	IF	Citations
91	Neuroblastoma cell proliferation involves prostaglandin E2 and subsequent $\hat{l}^2\hat{a}\in\epsilon$ atenin stabilization. FASEB Journal, 2013, 27, 1096.16.	0.2	0
92	Function and molecular regulation of WNTâ€5A expression by TGFâ€Î². FASEB Journal, 2013, 27, 729.6.	0.2	0
93	Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. Journal of Cellular and Molecular Medicine, 2011, 15, 2430-2442.	1.6	40
94	<i>De novo</i> synthesis of ß atenin <i>via</i> Hâ€Ras and MEK regulates airway smooth muscle growth. FASEB Journal, 2010, 24, 757-768.	0.2	40
95	The GSK-3 $\hat{\Pi}^2$ -catenin-signalling axis in smooth muscle and its relationship with remodelling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 185-191.	1.4	29
96	Pharmacology of airway smooth muscle proliferation. European Journal of Pharmacology, 2008, 585, 385-397.	1.7	42
97	Caveolae and Caveolins in the Respiratory System. Current Molecular Medicine, 2008, 8, 741-753.	0.6	52
98	Caveolae facilitate muscarinic receptor-mediated intracellular Ca ²⁺ mobilization and contraction in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1406-L1418.	1.3	53
99	p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1163-L1172.	1.3	27
100	Cooperative regulation of GSK-3 by muscarinic and PDGF receptors is associated with airway myocyte proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1348-L1358.	1.3	57
101	Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respiratory Research, 2006, 7, 73.	1.4	327
102	Bradykinin augments EGF-induced airway smooth muscle proliferation by activation of conventional protein kinase C isoenzymes. European Journal of Pharmacology, 2006, 535, 253-262.	1.7	10
103	Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L523-L534.	1.3	152
104	Rho-Kinase as a Drug Target for the Treatment of Airway Hyperresponsiveness in Asthma. Mini-Reviews in Medicinal Chemistry, 2006, 6, 339-348.	1.1	62
105	Protective Effects of Tiotropium Bromide in the Progression of Airway Smooth Muscle Remodeling. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1096-1102.	2.5	182
106	Muscarinic M3 receptor-dependent regulation of airway smooth muscle contractile phenotype. British Journal of Pharmacology, 2004, 141, 943-950.	2.7	26
107	Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent. European Journal of Pharmacology, 2004, 494, 73-76.	1.7	39
108	Acetylcholine: a novel regulator of airway smooth muscle remodelling?. European Journal of Pharmacology, 2004, 500, 193-201.	1.7	75