
Seyed Ali Delbari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5073998/publications.pdf Version: 2024-02-01

SEVED ALL DELRADI

#	Article	IF	CITATIONS
1	Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds, 2021, 857, 158281.	5.5	191
2	Spark plasma sintering of TiN ceramics codoped with SiC and CNT. Ceramics International, 2019, 45, 3207-3216.	4.8	99
3	Reactive spark plasma sintering of TiB2–SiC–TiN novel composite. International Journal of Refractory Metals and Hard Materials, 2019, 81, 119-126.	3.8	94
4	Hybrid Ti matrix composites with TiB2 and TiC compounds. Materials Today Communications, 2019, 20, 100576.	1.9	76
5	Characterization of triplet Ti–TiB–TiC composites: Comparison of in-situ formation and ex-situ addition of TiC. Ceramics International, 2020, 46, 11726-11734.	4.8	67
6	Electron microscopy investigation of spark plasma sintered ZrO2 added ZrB2–SiC composite. Ceramics International, 2020, 46, 19646-19649.	4.8	66
7	Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceramics International, 2020, 46, 12400-12408.	4.8	66
8	Nano-diamond reinforced ZrB2–SiC composites. Ceramics International, 2020, 46, 10172-10179.	4.8	62
9	Triplet carbide composites of TiC, WC, and SiC. Ceramics International, 2020, 46, 9070-9078.	4.8	60
10	Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105248.	3.8	59
11	Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceramics International, 2020, 46, 19209-19216.	4.8	58
12	Influence of Sintering Temperature on Microstructure and Mechanical Properties of Ti–Mo–B4C Composites. Metals and Materials International, 2021, 27, 1092-1102.	3.4	57
13	Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceramics International, 2020, 46, 18970-18975.	4.8	56
14	Influence of TiB2 content on the properties of TiC–SiCw composites. Ceramics International, 2020, 46, 7403-7412.	4.8	54
15	Strengthening of novel TiC–AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceramics International, 2020, 46, 14105-14113.	4.8	53
16	Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceramics International, 2019, 45, 5306-5311.	4.8	51
17	Role of nano-diamond addition on the characteristics of spark plasma sintered TiC ceramics. Diamond and Related Materials, 2020, 106, 107828.	3.9	49
18	Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets. Ceramics International, 2020, 46, 18742-18749.	4.8	48

SEYED ALI DELBARI

#	Article	IF	CITATIONS
19	Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceramics International, 2020, 46, 18924-18932.	4.8	45
20	Effect of B4C content on sintering behavior, microstructure and mechanical properties of Ti-based composites fabricated via spark plasma sintering. Materials Chemistry and Physics, 2020, 251, 123087.	4.0	44
21	Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets. Ceramics International, 2020, 46, 24906-24915.	4.8	43
22	A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics. Ceramics International, 2020, 46, 15982-15990.	4.8	42
23	Nanoindentational and conventional mechanical properties of spark plasma sintered Ti–Mo alloys. Journal of Materials Research and Technology, 2020, 9, 10647-10658.	5.8	36
24	Characteristics of quadruplet Ti–Mo–TiB2–TiC composites prepared by spark plasma sintering. Ceramics International, 2020, 46, 20885-20895.	4.8	36
25	Beneficial role of carbon black on the properties of TiC ceramics. Ceramics International, 2020, 46, 23544-23555.	4.8	35
26	Electrical and dielectric properties of Al/(PVP: Zn-TeO2)/p-Si heterojunction structures using current–voltage (I–V) and impedance-frequency (Z–f) measurements. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	33
27	Enhanced densification of spark plasma sintered TiB2 ceramics with low content AlN additive. Ceramics International, 2020, 46, 22127-22133.	4.8	33
28	Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceramics International, 2020, 46, 25341-25350.	4.8	32
29	Electron microscopy characterization of porous ZrB2–SiC–AlN composites prepared by pressureless sintering. Ceramics International, 2020, 46, 25415-25423.	4.8	30
30	Physical, mechanical and microstructural characterization of TiC–ZrN ceramics. Ceramics International, 2020, 46, 22154-22163.	4.8	30
31	Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105355.	3.8	26
32	A novel TiC-based composite co-strengthened with AlN particulates and graphene nano-platelets. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105331.	3.8	25
33	Microstructural, mechanical and friction properties of nano-graphite and h-BN added TiC-based composites. Ceramics International, 2020, 46, 28969-28979.	4.8	22
34	Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering. Ceramics International, 2020, 46, 29334-29338.	4.8	22
35	A novel spark plasma sintered TiC–ZrN–C composite with enhanced flexural strength. Ceramics International, 2020, 46, 29022-29032.	4.8	19
36	Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics. Ceramics International, 2021, 47, 12459-12466.	4.8	19

Seyed Ali Delbari

#	Article	IF	CITATIONS
37	Characterization of spark plasma sintered TiC–Si3N4 ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105444.	3.8	18
38	Effect of (Co–TeO2-doped polyvinylpyrrolidone) organic interlayer on the electrophysical characteristics of Al/p-Si (MS) structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 21909-21922.	2.2	16
39	On the electrical characteristics of Al/p-Si diodes with and without (PVP: Sn-TeO2) interlayer using current–voltage (l–V) measurements. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	14
40	Characterization of reactive spark plasma sintered (Zr,Ti)B2–ZrC–SiC composites. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 187-195.	5.3	14
41	A survey on spark plasma sinterability of CNT-added TiC ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105471.	3.8	13
42	TEM characterization of hot-pressed ZrB2-SiC-AlN composites. Results in Physics, 2020, 19, 103348.	4.1	12
43	Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites. Ceramics International, 2021, 47, 9873-9880.	4.8	12
44	Microstructural evolution of TiB2–SiC composites empowered with Si3N4, BN or TiN: A comparative study. Ceramics International, 2021, 47, 1002-1011.	4.8	10
45	Post hot rolling of spark plasma sintered Ti–Mo–B4C composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140214.	5.6	10
46	Microstructure–property correlation in nano-diamond and TiN added TiC-based ceramics. Ceramics International, 2021, 47, 449-460.	4.8	10
47	Synergistic effects of Si3N4 and CNT on densification and properties of TiC ceramics. Ceramics International, 2021, 47, 12941-12950.	4.8	10
48	Effects of discrete and simultaneous addition of SiC and Si3N4 on microstructural development of TiB2 ceramics. Ceramics International, 2021, 47, 3520-3528.	4.8	9
49	Characterization of TiC ceramics with SiC and/or WC additives using electron microscopy and electron probe micro-analysis. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	9
50	HRTEM study and mechanical properties of ZrB2–SiC composite: An insight into in-situ carbon formation over the SPS process. International Journal of Refractory Metals and Hard Materials, 2022, 104, 105789.	3.8	9
51	Role of TiCN addition on the characteristics of reactive spark plasma sintered ZrB2-based novel composites. Journal of Alloys and Compounds, 2021, 875, 159901.	5.5	8
52	Microstructure of spark plasma sintered TiC–TiB2–SiCw composite. Materials Chemistry and Physics, 2022, 281, 125877.	4.0	8
53	A TEM study on the microstructure of spark plasma sintered ZrB2-based composite with nano-sized SiC dopant. Progress in Natural Science: Materials International, 2021, 31, 47-54.	4.4	7
54	ZrB2SiCw composites with different carbonaceous additives. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105457.	3.8	5

SEYED ALI DELBARI

#	Article	IF	CITATIONS
55	An interfacial survey on microstructure of ZrB2-based ceramics codoped with carbon fibers and SiC whiskers. Materials Chemistry and Physics, 2022, 275, 125322.	4.0	5
56	Spark plasma sinterability of TiC ceramics with different nitride additives. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	4
57	Nanoindentation and TEM investigation of spark plasma sintered TiB2–SiC composite. Ceramics International, 2022, 48, 20285-20293.	4.8	4
58	Microstructural evolution during spark plasma sintering of TiC–AlN–graphene ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105496.	3.8	2
59	HRTEM and XPS characterizations for probable formation of TiBxNy solid solution during sintering process of TiB2–20SiC–5Si3N4 composite. Materials Chemistry and Physics, 2022, 288, 126380.	4.0	2
60	Effect of iron nanoparticles on spark plasma sinterability of ZrB2-based ceramics. Journal of the Australian Ceramic Society, 0, , .	1.9	2