Andrew Mehle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/507360/publications.pdf

Version: 2024-02-01

44 papers

3,224 citations

279487 23 h-index 37 g-index

51 all docs

51 docs citations

51 times ranked 3958 citing authors

#	Article	IF	CITATIONS
1	Fractalkine Preferentially Mediates Arrest and Migration of CD16+ Monocytes. Journal of Experimental Medicine, 2003, 197, 1701-1707.	4.2	500
2	Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2004, 279, 7792-7798.	1.6	409
3	Adaptive strategies of the influenza virus polymerase for replication in humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21312-21316.	3.3	325
4	Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes and Development, 2004, 18, 2861-2866.	2.7	259
5	Increased CCR5 Affinity and Reduced CCR5/CD4 Dependence of a Neurovirulent Primary Human Immunodeficiency Virus Type 1 Isolate. Journal of Virology, 2002, 76, 6277-6292.	1.5	211
6	A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection. Journal of Biological Chemistry, 2006, 281, 17259-17265.	1.6	160
7	An Inhibitory Activity in Human Cells Restricts the Function of an Avian-like Influenza Virus Polymerase. Cell Host and Microbe, 2008, 4, 111-122.	5.1	160
8	Highly Sensitive Real-Time <i>In Vivo</i> Imaging of an Influenza Reporter Virus Reveals Dynamics of Replication and Spread. Journal of Virology, 2013, 87, 13321-13329.	1.5	150
9	Reassortment and Mutation of the Avian Influenza Virus Polymerase PA Subunit Overcome Species Barriers. Journal of Virology, 2012, 86, 1750-1757.	1.5	112
10	Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nature Communications, 2015, 6, 6378.	5.8	101
11	Identification of an APOBEC3G Binding Site in Human Immunodeficiency Virus Type 1 Vif and Inhibitors of Vif-APOBEC3G Binding. Journal of Virology, 2007, 81, 13235-13241.	1.5	97
12	Obesity Outweighs Protection Conferred by Adjuvanted Influenza Vaccination. MBio, 2016, 7, .	1.8	76
13	Differential Splicing of ANP32A in Birds Alters Its Ability to Stimulate RNA Synthesis by Restricted Influenza Polymerase. Cell Reports, 2018, 24, 2581-2588.e4.	2.9	65
14	Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. ELife, 2017, 6, .	2.8	57
15	Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery. PLoS Pathogens, 2015, 11, e1004826.	2.1	53
16	Ubiquitination Upregulates Influenza Virus Polymerase Function. Journal of Virology, 2016, 90, 10906-10914.	1.5	45
17	Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nature Microbiology, 2020, 5, 1490-1503.	5.9	45
18	Multi-Modal Imaging with a Toolbox of Influenza AReporter Viruses. Viruses, 2015, 7, 5319-5327.	1.5	40

#	Article	IF	Citations
19	Conserved Features of the PB2 627 Domain Impact Influenza Virus Polymerase Function and Replication. Journal of Virology, 2014, 88, 5977-5986.	1.5	37
20	<i>In Vivo</i> Imaging of Influenza Virus Infection in Immunized Mice. MBio, 2017, 8, .	1.8	36
21	Unusual Influenza A Viruses in Bats. Viruses, 2014, 6, 3438-3449.	1.5	32
22	EPS8 Facilitates Uncoating of Influenza A Virus. Cell Reports, 2019, 29, 2175-2183.e4.	2.9	29
23	Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells. Journal of Virology, 2014, 88, 12572-12585.	1.5	28
24	Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks. Nature Communications, 2022, 13 , .	5.8	27
25	A Host of Factors Regulating Influenza Virus Replication. Viruses, 2010, 2, 566-573.	1.5	26
26	The Extracellular Domain of the \hat{l}^2 ₂ Integrin \hat{l}^2 Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity. MBio, 2019, 10, .	1.8	18
27	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathogens, 2020, 16, e1008841.	2.1	17
28	Fiat Luc: Bioluminescence Imaging Reveals In Vivo Viral Replication Dynamics. PLoS Pathogens, 2015, 11, e1005081.	2.1	17
29	Flu's cues: Exploiting host post-translational modifications to direct the influenza virus replication cycle. PLoS Pathogens, 2018, 14, e1007205.	2.1	12
30	Measuring Influenza Virus Infection Using Bioluminescent Reporter Viruses for In Vivo Imaging and In Vitro Replication Assays. Methods in Molecular Biology, 2018, 1836, 431-459.	0.4	12
31	Post-Translation Regulation of Influenza Virus Replication. Annual Review of Virology, 2020, 7, 167-187.	3.0	12
32	ANP32B, or not to be, that is the question for influenza virus. ELife, 2019, 8, .	2.8	11
33	Enisamium Reduces Influenza Virus Shedding and Improves Patient Recovery by Inhibiting Viral RNA Polymerase Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
34	Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038521.	2.9	9
35	The Avian Influenza Virus Polymerase Brings ANP32A Home to Roost. Cell Host and Microbe, 2016, 19, 137-138.	5.1	6
36	The later stages of viral infection: An undiscovered country of host dependency factors. PLoS Pathogens, 2020, 16, e1008777.	2.1	6

#	Article	IF	CITATIONS
37	Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) \hat{l}^21 a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes. PLoS ONE, 2015, 10, e0131399.	1.1	3
38	Host Factors Regulating the Influenza Virus Replication Machinery. , 2016, , 77-100.		1
39	Inhibitors of Peptidyl Proline Isomerases As Antivirals in Hepatitis C and Other Viruses. PLoS Pathogens, 2014, 10, e1004428.	2.1	O
40	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. , 2020, 16 , e 1008841 .		0
41	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase., 2020, 16, e1008841.		O
42	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. , 2020, 16 , e 1008841 .		0
43	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. , 2020, 16 , e 1008841 .		0
44	Phosphorylation controls RNA binding and transcription by the influenza virus polymerase., 2020, 16, e1008841.		0