Campbell McInnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5073256/publications.pdf

Version: 2024-02-01

32	1,447	17 h-index	32
papers	citations		g-index
35	35	35	2081 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Structure-activity and mechanistic studies of non-peptidic inhibitors of the PLK1 polo box domain identified through REPLACE. European Journal of Medicinal Chemistry, 2022, 227, 113926.	5.5	6
2	A Selective and Orally Bioavailable Quinoline-6-Carbonitrile-Based Inhibitor of CDK8/19 Mediator Kinase with Tumor-Enriched Pharmacokinetics. Journal of Medicinal Chemistry, 2022, 65, 3420-3433.	6.4	14
3	Nonpeptidic, Polo-Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target-Resistant Cells. Journal of Medicinal Chemistry, 2021, 64, 9916-9925.	6.4	9
4	RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene, 2020, 39, 4155-4169.	5.9	44
5	Peptidomimetic Poloâ€Boxâ€Targeted Inhibitors that Engage PLK1 in Tumor Cells and Are Selective against the PLK3 Tumor Suppressor. ChemMedChem, 2020, 15, 1058-1066.	3.2	10
6	Design and Synthesis of Type-IV Inhibitors of BRAF Kinase That Block Dimerization and Overcome Paradoxical MEK/ERK Activation. Journal of Medicinal Chemistry, 2019, 62, 3886-3897.	6.4	23
7	The Meisenheimer Complex as a Paradigm in Drug Discovery: Reversible Covalent Inhibition through C67 of the ATP Binding Site of PLK1. Cell Chemical Biology, 2018, 25, 1107-1116.e4.	5.2	11
8	Synthesis and biological evaluation of ranitidine analogs as multiple-target-directed cognitive enhancers for the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5573-5579.	2.2	8
9	Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3754-3760.	2.2	6
10	Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors. Journal of Visualized Experiments, 2015, , e52441.	0.3	2
11	Iterative Conversion of Cyclin Binding Groove Peptides into Druglike CDK Inhibitors with Antitumor Activity. Journal of Medicinal Chemistry, 2015, 58, 433-442.	6.4	12
12	Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones. Protein Expression and Purification, 2015, 113, 8-16.	1.3	7
13	Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opinion on Drug Discovery, 2014, 9, 773-789.	5.0	39
14	Quantification of the Effects of Ionic Strength, Viscosity, and Hydrophobicity on Protein–Ligand Binding Affinity. ACS Medicinal Chemistry Letters, 2014, 5, 931-936.	2.8	55
15	Fragment based discovery of arginine isosteres through REPLACE: Towards non-ATP competitive CDK inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 616-622.	3.0	11
16	Optimization of Non-ATP Competitive CDK/Cyclin Groove Inhibitors through REPLACE-Mediated Fragment Assembly. Journal of Medicinal Chemistry, 2013, 56, 1573-1582.	6.4	19
17	Targeting Subcellular Localization through the Polo-Box Domain: Non-ATP Competitive Inhibitors Recapitulate a PLK1 Phenotype. Molecular Cancer Therapeutics, 2012, 11, 1683-1692.	4.1	22
18	PLK1 as an oncology target: current status and future potential. Drug Discovery Today, 2011, 16, 619-625.	6.4	89

#	Article	IF	CITATIONS
19	Structural and Functional Analysis of Cyclin D1 Reveals p27 and Substrate Inhibitor Binding Requirements. ACS Chemical Biology, 2010, 5, 1169-1182.	3.4	19
20	Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics. Biochemical Pharmacology, 2009, 77, 1561-1571.	4.4	55
21	Truncation and Optimisation of Peptide Inhibitors of Cyclin-Dependent Kinase 2-Cyclinâ€A Through Structure-Guided Design. ChemMedChem, 2009, 4, 1120-1128.	3.2	17
22	Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discovery Today, 2008, 13, 875-881.	6.4	65
23	Virtual screening strategies in drug discovery. Current Opinion in Chemical Biology, 2007, 11, 494-502.	6.1	372
24	Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance., 2006, 2, 608-617.		92
25	Catch the Kinase Conformer. Chemistry and Biology, 2006, 13, 693-694.	6.0	8
26	REPLACE: A Strategy for Iterative Design of Cyclin-Binding Groove Inhibitors. ChemBioChem, 2006, 7, 1909-1915.	2.6	40
27	Progress in the Discovery of Polo-like Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2005, 5, 181-197.	2.1	114
28	Design, synthesis, biological activity and structural analysis of cyclic peptide inhibitors targeting the substrate recruitment site of cyclin-dependent kinase complexes. Organic and Biomolecular Chemistry, 2004, 2, 2735.	2.8	53
29	Discovery of a Novel Family of CDK Inhibitors with the Program LIDAEUS. Structure, 2003, 11, 399-410.	3.3	115
30	Insights into Cyclin Groove Recognition. Structure, 2003, 11, 1537-1546.	3.3	52
31	Peptidomimetic Design of CDK Inhibitors Targeting theRecruitment Site of the Cyclin Subunit. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 57-69.	7.0	39
32	Peptide inhibitors of CDK2-cyclin A that target the cyclin recruitment-Site: structural variants of the C-Terminal Phe. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2501-2505.	2.2	18