Tianxi Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5073168/tianxi-liu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 464 22,121 125 h-index g-index papers citations 25,922 7.4 492 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
464	Ultrathin Polypyrrole Layers Boosting MoO as Both Cathode and Anode Materials for a 2.0 V High-Voltage Aqueous Supercapacitor <i>ACS Applied Materials & District Research (Control of the Materials and Polypyrrole)</i>	9.5	4
463	Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices <i>Chemical Communications</i> , 2022 ,	5.8	3
462	Facile Fabrication of Highly Stretchable, Stable, and Self-Healing Ion-Conductive Sensors for Monitoring Human Motions. <i>Chemistry of Materials</i> , 2022 , 34, 1110-1120	9.6	5
461	Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding. <i>Composites Communications</i> , 2022 , 29, 101028	6.7	3
460	Electron-Deficient Au Nanoparticles Confined in Organic Molecular Cages for Catalytic Reduction of 4-Nitrophenol. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1276-1283	5.6	2
459	Homogeneous electric field and Li flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 138-146	9.3	1
458	Thermo-spun reaction encapsulation fabrication of environment-stable and knittable fibrous ionic conductors with large elasticity and high fatigue resistance. <i>Chemical Engineering Journal</i> , 2022 , 435, 134826	14.7	1
457	Corrosion-Resistant Graphene-Based Magnetic Composite Foams for Efficient Electromagnetic Absorption ACS Applied Materials & Interfaces, 2022,	9.5	5
456	3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors. <i>Composites Science and Technology</i> , 2022 , 220, 10926	3 ^{8.6}	2
455	Low-crystallinity tungsten disulfide construction by in-situ confinement effect enables ultrastable sodium-ion storage. <i>Journal of Alloys and Compounds</i> , 2022 , 900, 163518	5.7	O
454	The bonding strength, water resistance and flame retardancy of soy protein-based adhesive by incorporating tailor-made coreshell nanohybrid compounds. <i>Chemical Engineering Journal</i> , 2022 , 428, 132390	14.7	10
453	Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. <i>Journal of Materials Science and Technology</i> , 2022 , 102, 97-104	9.1	8
452	Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. <i>Journal of Materials Science and Technology</i> , 2022 , 105, 194-202	9.1	10
451	A Universal Polyiodide Regulation Using Quaternization Engineering toward High Value-Added and Ultra-Stable Zinc-Iodine Batteries <i>Advanced Science</i> , 2022 , e2105598	13.6	5
450	Composite membranes with nanofilms assembled on nanofiber supports for high-performance nanofiltration with antibacterial property. <i>Composites Communications</i> , 2022 , 31, 101113	6.7	O
449	An ionic liquid enhanced gel polymer electrolyte for high performance lithium-metal batteries based on sulfurized polyacrylonitrile cathode. <i>Composites Communications</i> , 2022 , 31, 101100	6.7	О
448	Multilayer cross-linking polyetherimide/ Ti 3 C 2 T x MXenes material with pores channel structure for electromagnetic interference shielding. <i>Journal of Applied Polymer Science</i> , 2022 , 139, 52075	2.9	1

(2021-2022)

447	Topochemistry-Driven Synthesis of Transition-Metal Selenides with Weakened Van Der Waals Force to Enable 3D-Printed Na-Ion Hybrid Capacitors. <i>Advanced Functional Materials</i> , 2022 , 32, 2110016	15.6	21	
446	Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts <i>Nature Communications</i> , 2022 , 13, 2662	17.4	10	
445	Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. <i>Composites Science and Technology</i> , 2022 , 109541	8.6	О	
444	Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. <i>Chemical Communications</i> , 2021 ,	5.8	16	
443	A Reanalysis of the Diverse Sodium Species in Carbon Anodes for Sodium Ion Batteries: A Thermodynamic View. <i>Advanced Energy Materials</i> , 2021 , 11, 2102489	21.8	7	
442	Rechargeable aqueous Zn-based energy storage devices. <i>Joule</i> , 2021 ,	27.8	37	
441	Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. <i>Journal of Colloid and Interface Science</i> , 2021 ,	9.3	6	
440	Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. <i>ACS Applied Materials & Design Series</i> , 2021,	9.5	2	
439	A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 23968-23976	13	5	
438	Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48634-48642	9.5	2	
437	Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 49358-49368	9.5	14	
436	Superior toughened bio-compostable Poly(glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers. <i>Polymer</i> , 2021 , 235, 124269	3.9	2	
435	Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 151, 106671	8.4	9	
434	Ultrastretchable and Stable Conductive Elastomer Based on Micro-Ionicgel for Wide-Working-Range Sensors. <i>ACS Applied Materials & District Range Sensors</i> . <i>ACS Applied Materials & District Range Sensors</i> .	9.5	5	
433	Molten salt-confined pyrolysis towards carbon nanotube-backboned microporous carbon for high-energy-density and durable supercapacitor electrodes. <i>Nanotechnology</i> , 2021 , 32, 095605	3.4	4	
432	Tailoring the d-Band Center of Double-Perovskite LaCoNiO Nanorods for High Activity in Artificial N Fixation. <i>ACS Applied Materials & Double States</i> , 2021, 13, 13347-13353	9.5	4	
431	Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis. <i>ACS Applied Materials & Material</i>	9.5	22	
430	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. <i>Composites Communications</i> , 2021 , 24, 100677	6.7	18	

429	Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors. <i>Composites Communications</i> , 2021 , 24, 100610	6.7	9
428	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. <i>Macromolecules</i> , 2021 , 54, 3832-38	3 4 4 ⁵	15
427	Thin-film composite membranes with mineralized nanofiber supports for highly efficient nanofiltration. <i>Composites Communications</i> , 2021 , 24, 100695	6.7	6
426	Electron-rich platinum electrocatalysts supported onto tin oxides for efficient oxygen reduction. <i>Composites Communications</i> , 2021 , 24, 100603	6.7	5
425	Controllable synthesis of sulfurized polyacrylonitrile nanofibers for high performance lithiumBulfur batteries. <i>Composites Communications</i> , 2021 , 24, 100675	6.7	9
424	Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization. <i>Advanced Materials</i> , 2021 , 33, e2007548	24	50
423	Carbon Fiber Supported Binary Metal Sulfide Catalysts with Multi-Dimensional Structures for Electrocatalytic Nitrogen Reduction Reactions Over a Wide pH Range. <i>Advanced Fiber Materials</i> , 2021 , 3, 229-238	10.9	10
422	Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. <i>Research</i> , 2021 , 2021, 9761625	7.8	14
421	Two Competing Reactions of Sulfurized Polyacrylonitrile Produce High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description</i> (2008) 13, 25002-25009	9.5	6
420	Zinc-Ion Batteries: Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization (Adv. Mater. 20/2021). <i>Advanced Materials</i> , 2021 , 33, 2170158	24	2
419	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. <i>Chemical Engineering Journal</i> , 2021 , 411, 128506	14.7	43
418	Porous polymer composite separators with three-dimensional ion-selective nanochannels for high-performance LiB batteries. <i>Composites Communications</i> , 2021 , 25, 100679	6.7	13
417	PdBnO2 heterojunction catalysts anchored on graphene sheets for enhanced oxygen reduction. <i>Composites Communications</i> , 2021 , 25, 100703	6.7	8
416	Wet-spinning of ionic liquid@elastomer coaxial fibers with high stretchability and wide temperature resistance for strain sensors. <i>Composites Communications</i> , 2021 , 25, 100693	6.7	9
415	High hydrophobic poly(lactic acid) foams impregnating one-step Si E modified lignin nanoparticles for oil/organic solvents absorption. <i>Composites Communications</i> , 2021 , 25, 100730	6.7	11
414	Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing. <i>Chemistry of Materials</i> , 2021 , 33, 6146-615	7 9.6	23
413	Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. <i>Chemical Engineering Journal</i> , 2021 , 420, 127597	7 ^{14.7}	7
412	Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. <i>Chemical Engineering Journal</i> , 2021 , 404, 126523	14.7	18

411	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197	12	19
410	Structural engineering of cathodes for improved Zn-ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 58, 147-155	12	13
409	Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment. <i>Science China Materials</i> , 2021 , 64, 1267-1277	7.1	15
408	Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. <i>Polymer</i> , 2021 , 212, 123280	3.9	5
407	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. <i>Chemical Engineering Journal</i> , 2021 , 420, 127637	14.7	20
406	A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers. <i>Journal of Power Sources</i> , 2021 , 483, 229188	8.9	10
405	UV resistant PBT nanocomposites by reactive compatibilization and selective distribution of tailor-made double-shelled TiO2 nanohybrids. <i>Composites Part B: Engineering</i> , 2021 , 205, 108510	10	1
404	3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 423-432	13	27
403	Polymer matrix wave-transparent composites: A review. <i>Journal of Materials Science and Technology</i> , 2021 , 75, 225-251	9.1	48
402	Metal-Organic-Framework-Derived Porous Carbon Embedded with TiO 2 Nanoparticles as a Cathode for Advanced LithiumBulfur Batteries. <i>ChemElectroChem</i> , 2021 , 8, 90-95	4.3	8
401	The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system. <i>Energy and Environmental Science</i> , 2021 , 14, 3931-3937	35.4	11
400	Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2086-2094	7.1	18
399	A General Strategy to Boost Electrocatalytic Nitrogen Reduction on Perovskite Oxides via the Oxygen Vacancies Derived from A-Site Deficiency. <i>Advanced Energy Materials</i> , 2021 , 11, 2003799	21.8	26
398	3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling. <i>Composites Communications</i> , 2021 , 23, 100600	6.7	17
397	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. <i>ACS Applied Materials & Detection</i> , 13, 7580-7591	9.5	8
396	Ultrafine MoP Nanoparticle Splotched Nitrogen-Doped Carbon Nanosheets Enabling High-Performance 3D-Printed Potassium-Ion Hybrid Capacitors. <i>Advanced Science</i> , 2021 , 8, 2004142	13.6	40
395	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. <i>Composites Part B: Engineering</i> , 2021 , 217, 108901	10	20
394	Isolation of Metalloid Boron Atoms in Intermetallic Carbide Boosts the Catalytic Selectivity for Electrocatalytic N2 Fixation. <i>Advanced Energy Materials</i> , 2021 , 11, 2102138	21.8	10

393	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium Bulfur Batteries. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18604-18613	3.8	3
392	Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. <i>Composites Part B: Engineering</i> , 2021 , 219, 108963	10	20
391	Wood-Derived Composites with High Performance for Thermal Management Applications. <i>Biomacromolecules</i> , 2021 , 22, 4228-4236	6.9	O
390	Polyimide Nanofiber-Reinforced TiCT Aerogel with "Lamella-Pillar" Microporosity for High-Performance Piezoresistive Strain Sensing and Electromagnetic Wave Absorption. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 47134-47146	9.5	18
389	Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. <i>Applied Catalysis B: Environmental</i> , 2021 , 292, 120144	21.8	10
388	Automatically Modulated Thermoresponsive Film Based on a Phase-Changing Copolymer. <i>Chemistry of Materials</i> , 2021 , 33, 7232-7241	9.6	4
387	Fe3O4 Nanoparticle-Decorated Graphene Oxide Nanosheets for Magnetic Assembly of Artificial Nacre. <i>ACS Applied Nano Materials</i> , 2021 , 4, 9689-9696	5.6	2
386	Chemically Laminating Graphene Oxide Nanosheets with Phenolic Nanomeshes for Robust Membranes with Fast Desalination. <i>Nano Letters</i> , 2021 , 21, 8236-8243	11.5	5
385	Surface modification of BNNS bridged by graphene oxide and Ag nanoparticles: A strategy to get balance between thermal conductivity and mechanical property. <i>Composites Communications</i> , 2021 , 27, 100851	6.7	5
384	Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. <i>Energy Storage Materials</i> , 2021 , 42, 68-77	19.4	14
383	Lattice-strain and electron-density modulation of palladium nanocatalysts for highly efficient oxygen reduction. <i>Journal of Colloid and Interface Science</i> , 2021 , 602, 159-167	9.3	1
382	Phenolic membranes with tunable sub-10-nm pores for nanofiltration and tight-ultrafiltration. Journal of Membrane Science, 2021 , 640, 119858	9.6	2
381	Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18294-18305	13	14
380	A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. <i>Nano Research</i> , 2021 , 14, 154	1 ⁻¹ 1550	10
379	Ultrathin MnO2 Sheet Arrays Grown on Hollow Carbon Fibers as Effective Polysulfide-Blocking Interlayers for High-Performance LiB Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12703-12708	6.1	7
378	N Electroreduction to NH by Selenium Vacancy-Rich ReSe Catalysis at an Abrupt Interface. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13320-13327	16.4	53
377	3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction. <i>Nanotechnology</i> , 2020 , 31, 364003	3.4	7
376	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. <i>Applied Surface Science</i> , 2020 , 526, 146626	6.7	11

(2020-2020)

375	N2 Electroreduction to NH3 by Selenium Vacancy-Rich ReSe2 Catalysis at an Abrupt Interface. <i>Angewandte Chemie</i> , 2020 , 132, 13422-13429	3.6	10	
374	Nitrogen-doped hollow carbon nanoflowers from a preformed covalent triazine framework for metal-free bifunctional electrocatalysis. <i>Nanoscale</i> , 2020 , 12, 14441-14447	7.7	20	
373	Hierarchical composites of NiCo2S4 nanorods grown on carbon nanofibers as anodes for high-performance lithium ion batteries. <i>Composites Communications</i> , 2020 , 21, 100395	6.7	11	
372	Emerging Dual-Channel Transition-Metal-Oxide Quasiaerogels by Self-Embedded Templating. <i>Advanced Functional Materials</i> , 2020 , 30, 2000024	15.6	25	
371	Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. <i>Chemical Engineering Journal</i> , 2020 , 390, 124623	14.7	52	
370	Refining Energy Levels in ReS2 Nanosheets by Low-Valent Transition-Metal Doping for Dual-Boosted Electrochemical Ammonia/Hydrogen Production. <i>Advanced Functional Materials</i> , 2020 , 30, 1907376	15.6	55	
369	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFeO nanoarrays to enhance the oxygen evolution electrocatalysis. <i>Nanoscale</i> , 2020 , 12, 10977-10986	7.7	11	
368	Fluorine and Nitrogen Dual-Doped Porous Carbon Nanosheet-Enabled Compact Electrode Structure for High Volumetric Energy Storage. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4949-4957	6.1	19	
367	Photoprotective and multifunctional polymer film with excellent near-infrared and UV shielding properties. <i>Composites Communications</i> , 2020 , 22, 100443	6.7	8	
366	Fluorine/adamantane modified cyanate resins with wonderful interfacial bonding strength with PBO fibers. <i>Composites Part B: Engineering</i> , 2020 , 186, 107827	10	35	
365	Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. <i>Nature Communications</i> , 2020 , 11, 62	17.4	98	
364	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1652-1659	13	33	
363	Activation of graphitic nitrogen sites for boosting oxygen reduction. <i>Carbon</i> , 2020 , 159, 611-616	10.4	18	
362	Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. <i>Chemical Engineering Journal</i> , 2020 , 385, 123963	14.7	77	
361	Vacancy engineering of group VI anions in NiCo2A4 (Al O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. <i>Electrochimica Acta</i> , 2020 , 333, 135515	6.7	9	
360	Self-assembly of MoO-decorated carbon nanofiber interlayers for high-performance lithium-sulfur batteries. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2157-2163	3.6	17	
359	Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage. <i>Energy Storage Materials</i> , 2020 , 27, 591-598	19.4	33	
358	In-situ synthesis of microspherical Sb@C composite anode with high tap density for lithium/sodium-ion batteries. <i>Composites Communications</i> , 2020 , 17, 177-181	6.7	20	

357	Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. <i>Carbon</i> , 2020 , 158, 102-109	10.4	27
356	Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. <i>Composites Part B: Engineering</i> , 2020 , 182, 107624	10	30
355	Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries. <i>Composites Communications</i> , 2020 , 22, 100519	6.7	14
354	In-situ reducing synthesis of MoP@nitrogen-doped carbon nanofibers as an anode material for lithium/sodium-ion batteries. <i>Electrochimica Acta</i> , 2020 , 358, 136921	6.7	11
353	Flexible naphthalene-based polyimide nanofiber cathode with hierarchical micro/nanoporous structure for high-performance organic sodium-ion batteries. <i>Composites Communications</i> , 2020 , 22, 100490	6.7	12
352	CN: A Class of Covalent Frameworks with Unique Properties. <i>Advanced Science</i> , 2020 , 7, 2001767	13.6	18
351	Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. <i>Nano Energy</i> , 2020 , 77, 105189	17.1	17
350	Titanium-Containing Metal©rganic Framework Modified Separator for Advanced LithiumBulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12968-12975	8.3	28
349	Fused deposition modeling 3D printing of polyamide-based composites and its applications. <i>Composites Communications</i> , 2020 , 21, 100413	6.7	53
348	High-performance and functional PBT/EVMG/CNTs nanocomposites from recycled sources by in situ multistep reaction-induced interfacial control. <i>Composites Science and Technology</i> , 2020 , 190, 1080	4 ^{8.6}	13
348 347	High-performance and functional PBT/EVMG/CNTs nanocomposites from recycled sources by in situ multistep reaction-induced interfacial control. <i>Composites Science and Technology</i> , 2020 , 190, 10804 Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342	4 ^{8.6}	13
	situ multistep reaction-induced interfacial control. <i>Composites Science and Technology</i> , 2020 , 190, 10804 Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent	11	
347	situ multistep reaction-induced interfacial control. <i>Composites Science and Technology</i> , 2020 , 190, 10804 Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342 Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with	11	40
347 346	Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342 Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO Nanohybrids. <i>ACS Applied Materials & Double Shell Structured Stereocomplexation Management</i> Artificial Nacre Epoxy Nanomaterials Based on Janus Graphene Oxide for Thermal Management	11 08 ^{.5}	40
347 346 345	Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342 Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO Nanohybrids. <i>ACS Applied Materials & Double Shell Structured Stereocomplexation Management Applications</i> . <i>ACS Applied Materials & Materials & Management Applications</i> . <i>ACS Applied Materials & Materials & Management Manag</i>	11 08 ^{.5} 9.5	40 13 9
347346345344	Situ multistep reaction-induced interfacial control. <i>Composites Science and Technology</i> , 2020 , 190, 1080. Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342 Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO Nanohybrids. <i>ACS Applied Materials & Double Materials & Management Management Applications</i> . <i>ACS Applied Materials & Management Manag</i>	9·5 24	40 13 9 27
347346345344343	Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. <i>Small</i> , 2020 , 16, e2004342 Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO Nanohybrids. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 49090-4910 Artificial Nacre Epoxy Nanomaterials Based on Janus Graphene Oxide for Thermal Management Applications. <i>ACS Applied Materials & ACS Applied Materials</i> , 2020 , 12, 44273-44280 Three-Phase Boundary in Cross-Coupled Micro-Mesoporous Networks Enabling 3D-Printed and Ionogel-Based Quasi-Solid-State Micro-Supercapacitors. <i>Advanced Materials</i> , 2020 , 32, e2002474 A universal pH range and a highly efficient Mo2C-based electrocatalyst for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19879-19886	9.5 9.5 24	40 13 9 27 23

339	Improving hierarchical porous structure of carbon aerogels for more efficient ion transport for supercapacitors with commercial level mass loading. <i>Electrochimica Acta</i> , 2019 , 323, 134811	6.7	16
338	In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3253-3263	13	43
337	Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. <i>Composites Science and Technology</i> , 2019 , 173, 47-52	8.6	76
336	Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3024-3030	13	72
335	Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metalorganic framework for tri-functional ORR, OER and HER electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3664-3672	13	154
334	Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor. <i>Electrochimica Acta</i> , 2019 , 318, 865-874	6.7	27
333	Embedding CoMoO nanoparticles into porous electrospun carbon nanofibers towards superior lithium storage performance. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 320-327	9.3	22
332	Effect of soluble sulfur species on the electrochemical behavior of lithiumBulfur batteries with dual-phase electrolytes. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 1966-1970	5.8	5
331	Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe2 nanosheets as an efficient electrocatalyst for hydrogen evolution. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1209-1216	6.8	9
330	Electrospun Nanofiber Electrodes 2019 , 641-669		4
330	Electrospun Nanofiber Electrodes 2019 , 641-669 Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248	8.3	21
	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for	8.3	
329	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248 Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell		21
329	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248 Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. <i>Composites Communications</i> , 2019 , 15, 162-167 MnCo2S4/FeCo2S4 [bllipop[arrays on a hollow N-doped carbon skeleton as flexible electrodes for	6.7	21
329 328 327	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248 Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. <i>Composites Communications</i> , 2019 , 15, 162-167 MnCo2S4/FeCo2S4 Ibllipoplarrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20778-20789 Self-Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels	6.7	21 19 44
329 328 327 326	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248 Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. <i>Composites Communications</i> , 2019 , 15, 162-167 MnCo2S4/FeCo2S4 [bllipoptarrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20778-20789 Self-Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1903660 Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate	6.7	21194466
329 328 327 326 325	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5240-5248 Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. <i>Composites Communications</i> , 2019 , 15, 162-167 MnCo2S4/FeCo2S4 Ibllipoplarrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20778-20789 Self-Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1903660 Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1902929 Positive Surface Pseudocapacitive Behavior-Induced Fast and Large Li-ion Storage in Mesoporous	6.7 13 15.6	2119446687

321	Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes. <i>Composites Communications</i> , 2019 , 12, 21-25	6.7	39
320	Silicon @ nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for high-performance lithium-ion batteries. <i>Applied Surface Science</i> , 2019 , 475, 211-2	2 187	24
319	Reaction Packaging CoSe Nanoparticles in N-Doped Carbon Polyhedra with Bifunctionality for Overall Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 3372-3381	9.5	49
318	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 827-833	13	36
317	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 1384-1393	9.5	36
316	NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1594-1601	6.8	24
315	Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. <i>Composites Communications</i> , 2018 , 8, 83-91	6.7	87
314	Ultra-long-term cycling stability of an integrated carbon-sulfur membrane with dual shuttle-inhibiting layers of graphene "nets" and a porous carbon skin. <i>Chemical Communications</i> , 2018 , 54, 5090-5093	5.8	75
313	Highly Dual-Heteroatom-Doped Ultrathin Carbon Nanosheets with Expanded Interlayer Distance for Efficient Energy Storage. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3143-3153	8.3	26
312	Mechanically strong polyimide / carbon nanotube composite aerogels with controllable porous structure. <i>Composites Science and Technology</i> , 2018 , 156, 186-191	8.6	78
311	3D hierarchical CMF/MoSe2 composite foam as highly efficient electrocatalyst for hydrogen evolution. <i>Electrochimica Acta</i> , 2018 , 263, 94-101	6.7	21
310	A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction. <i>Applied Surface Science</i> , 2018 , 443, 266-273	6.7	12
309	High-temperature solvent-free sulfidation of MoO confined in a polypyrrole shell: MoS nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. <i>Nanoscale</i> , 2018 , 10, 7536-7543	7.7	30
308	Effects of preparation methods on the mechanical and thermal properties of graphene-modified HNBR composites. <i>E-Polymers</i> , 2018 , 18, 57-65	2.7	1
307	Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. <i>Nano Research</i> , 2018 , 11, 1274-1284	10	41
306	Self-supported MoS2@NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. <i>Composites Communications</i> , 2018 , 9, 86-91	6.7	29
305	Highly porous polyimide-derived carbon aerogel as advanced three-dimensional framework of electrode materials for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2018 , 283, 1763-1772	6.7	29
304	Sulfur-Deficient Bismuth Sulfide/Nitrogen-Doped Carbon Nanofibers as Advanced Free-Standing Electrode for Asymmetric Supercapacitors. <i>Small</i> , 2018 , 14, e1801562	11	77

303	Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. <i>Nano Research</i> , 2018 , 11, 6155-6166	10	26	
302	Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. <i>Nanoscale</i> , 2018 , 10, 16005-16012	7.7	11	
301	A biomimetic Setaria viridis-inspired electrode with polyaniline nanowire arrays aligned on MoO3@polypyrrole coreBhell nanobelts. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13428-13437	13	34	
300	Multifunctional second barrier layers for lithiumBulfur batteries. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 235-252	7.8	27	
299	Visible light-driven superoxide generation by conjugated polymers for organic synthesis. <i>Nano Research</i> , 2018 , 11, 1099-1108	10	8	
298	A rechargeable metal-free full-liquid sulfurBromine battery for sustainable energy storage. Journal of Materials Chemistry A, 2018 , 6, 20737-20745	13	5	
297	Bioinspired Micro/Nanofluidic Ion Transport Channels for Organic Cathodes in High-Rate and Ultrastable Lithium/Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804629	15.6	47	
296	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7035-7045	6.1	20	
295	Three-dimensional hierarchical porous TiO2/graphene aerogels as promising anchoring materials for lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2018 , 292, 568-574	6.7	30	
294	Assessment on the Self-Discharge Behavior of Lithium-Sulfur Batteries with LiNO-Possessing Electrolytes. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 35175-35183	9.5	32	
293	Ion-Selective Polyamide Acid Nanofiber Separators for High-Rate and Stable Lithium-Sulfur Batteries. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	34	
292	Graphenetarbon Nanotube Aerogel with a Scroll-Interconnected-Sheet Structure as an Advanced Framework for a High-Performance Asymmetric Supercapacitor Electrode. <i>ACS Applied Nano Materials</i> , 2018 , 1, 4435-4441	5.6	23	
291	Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2018 , 10, 19871-19880	9.5	41	
290	3D Conductive Network Supported Monolithic Molybdenum Disulfide Nanosheets for High-Performance Lithium Storage Applications. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601228	4.6	5	
289	Extraordinary rate capability achieved by a 3D "skeleton/skin" carbon aerogel-polyaniline hybrid with vertically aligned pores. <i>Chemical Communications</i> , 2017 , 53, 2810-2813	5.8	105	
288	Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. <i>Nanoscale</i> , 2017 , 9, 4445-4455	7.7	62	
287	General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11236-11245	13	75	
286	MoSe2 Nanosheets Grown on Polydopamine-Derived Porous Fibers: A High-Performance Catalyst for Hydrogen Evolution Reaction. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600825	4.6	19	

285	Bionanofiber Assisted Decoration of Few-Layered MoSe Nanosheets on 3D Conductive Networks for Efficient Hydrogen Evolution. <i>Small</i> , 2017 , 13, 1602866	11	48
284	Phosphorus-doped NiCoS nanocrystals grown on electrospun carbon nanofibers as ultra-efficient electrocatalysts for the hydrogen evolution reaction. <i>Nanoscale Horizons</i> , 2017 , 2, 277-283	10.8	64
283	Supramolecular Assembly of 1D Pristine Carbon Nanotubes and 2D Graphene Oxides into Macroscopic All-Carbon Hybrid Sponges for High-Energy-Density Supercapacitors. <i>ChemNanoMat</i> , 2017 , 3, 447-453	3.5	10
282	Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. <i>Composites Science and Technology</i> , 2017 , 139, 57-63	8.6	102
281	Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. <i>Nanoscale</i> , 2017 , 9, 16313-16320	7.7	39
280	Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19997-20004	13	41
279	Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2017 , 328, 599-608	14.7	44
278	A highly conductive carbon-sulfur film with interconnected mesopores as an advanced cathode for lithium-sulfur batteries. <i>Chemical Communications</i> , 2017 , 53, 9097-9100	5.8	74
277	Controllable Synthesis of Ultrathin NiCo O Nanosheets Incorporated onto Composite Nanotubes for Efficient Oxygen Reduction. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2426-2433	4.5	13
276	Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2017 , 250, 91-98	6.7	35
275	MoSe Nanosheet Array with Layered MoS Heterostructures for Superior Hydrogen Evolution and Lithium Storage Performance. <i>ACS Applied Materials & District Research</i> , 9, 44550-44559	9.5	73
274	Carbon-Nanotube-Incorporated Graphene Scroll-Sheet Conjoined Aerogels for Efficient Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6994-7002	8.3	33
273	Graphene-CNT Hybrids for Energy Applications. Springer Briefs in Molecular Science, 2017, 53-90	0.6	2
272	Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications. <i>Springer Briefs in Molecular Science</i> , 2017 ,	0.6	15
271	Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. <i>Composite Interfaces</i> , 2017 , 24, 291-305	2.3	14
270	Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 251-268	7.8	122
269	Strategies for the Hybridization of CNTs with Graphene. Springer Briefs in Molecular Science, 2017, 21-51	10.6	7
268	Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3558-66	9.5	90

267	Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: A synergistic binder-free catalyst toward oxygen reduction reactions. <i>Composites Communications</i> , 2016 , 1, 15-19	6.7	25
266	Constructing a P izza-LikelMoS2/Polypyrrole/Polyaniline Ternary Architecture with High Energy Density and Superior Cycling Stability for Supercapacitors. <i>Advanced Materials Interfaces</i> , 2016 , 3, 16000	5 8 5	36
265	Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15861-15869	13	54
264	Flexible hierarchical membranes of WS nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. <i>Nanoscale</i> , 2016 , 8, 16387-	1 <u>63</u> 94	63
263	A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithiumBulfur batteries. <i>Nano Research</i> , 2016 , 9, 3735-3746	10	127
262	Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. <i>Nano Research</i> , 2016 , 9, 2747-2759	10	60
261	Molybdenum Carbide Anchored on Graphene Nanoribbons as Highly Efficient All-pH Hydrogen Evolution Reaction Electrocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6313-6321	8.3	89
260	Elastic Carbon Aerogels Reconstructed from Electrospun Nanofibers and Graphene as Three-Dimensional Networked Matrix for Efficient Energy Storage/Conversion. <i>Scientific Reports</i> , 2016 , 6, 31541	4.9	32
259	Self-Templated Growth of Vertically Aligned 2H-1T MoS for Efficient Electrocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Employed Materials & Materials &</i>	9.5	108
258	Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening. <i>Advanced Materials</i> , 2016 , 28, 2834-9	24	92
257	Flexible Electrospun Carbon Nanofiber@NiS Core/Sheath Hybrid Membranes as Binder-Free Anodes for Highly Reversible Lithium Storage. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500467	4.6	79
256	A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 969-976	6.8	12
255	Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode. <i>Small</i> , 2016 , 12, 3235-44	11	312
254	Quasi-one-dimensional graphene nanoribbon-supported MoS2 nanosheets for enhanced hydrogen evolution reaction. <i>RSC Advances</i> , 2016 , 6, 13757-13765	3.7	18
253	Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. <i>ACS Applied Materials & Design Science</i> , 2016, 8, 7077-85	9.5	91
252	Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures. <i>RSC Advances</i> , 2016 , 6, 28419-28427	3.7	15
251	Studies on Mechanical Properties and Morphology of Sisal Pulp Reinforced Phenolic Composites. <i>Advances in Polymer Technology</i> , 2016 , 35, 353-360	1.9	1
250	NiCo2S4 Nanosheets Grown on 3D Networks of Nitrogen-Doped Graphene/Carbon Nanotubes: Advanced Anode Materials for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 1384-1391	4.3	38

249	Localized and Continuous Tuning of Monolayer MoS2 Photoluminescence Using a Single Shape-Controlled Ag Nanoantenna. <i>Advanced Materials</i> , 2016 , 28, 701-6	24	62
248	In Situ Growth of Fe2O3 Nanoparticles on Highly Porous Graphene/Polyimide-Based Carbon Aerogel Nanocomposites for Effectively Selective Detection of Dopamine. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600137	4.6	29
247	Carbon Aerogels Derived from Bacterial Cellulose/Polyimide Composites as Versatile Adsorbents and Supercapacitor Electrodes. <i>ChemNanoMat</i> , 2016 , 2, 212-219	3.5	41
246	Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries. <i>Scientific Reports</i> , 2016 , 6, 31496	4.9	17
245	Rough-surfaced molybdenum carbide nanobeads grown on graphene-coated carbon nanofibers membrane as free-standing hydrogen evolution reaction electrocatalyst. <i>Materials Today Chemistry</i> , 2016 , 1-2, 32-39	6.2	13
244	In Situ Growth of Co3O4 Nanoparticles on Interconnected Nitrogen-Doped Graphene Nanoribbons as Efficient Oxygen Reduction Reaction Catalyst. <i>ChemNanoMat</i> , 2016 , 2, 972-979	3.5	9
243	Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS 2 : Advanced electrocatalysts for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2016 , 219, 604-613	6.7	37
242	Electrospun carbon nanofiber@CoS2 core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1280-1288	6.8	32
241	Hierarchical Hybrids of Mesoporous NiCo2O4 Needles/Graphene/Carbon Nanotubes with High Performance for Lithium Ion Batteries and Oxygen Reduction Reactions. <i>ChemNanoMat</i> , 2016 , 2, 1077-	1085	12
240	Electrospun Polymer Nanofiber Separators and Electrolyte Membranes for Energy Storage and Conversion Applications 2016 , 201-223		2
240		10	46
	Conversion Applications 2016 , 201-223 Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional	10	
239	Conversion Applications 2016 , 201-223 Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016 , 9, 2938-2949 Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman		46
239	Conversion Applications 2016, 201-223 Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016, 9, 2938-2949 Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman Scattering. <i>Chinese Journal of Chemistry</i> , 2016, 34, 73-81 Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. <i>Polymer</i>	4.9	46
239238237	Conversion Applications 2016, 201-223 Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016, 9, 2938-2949 Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman Scattering. <i>Chinese Journal of Chemistry</i> , 2016, 34, 73-81 Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. <i>Polymer Composites</i> , 2015, 36, 433-438 Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance	4.9	46 9 27
239238237236	Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016 , 9, 2938-2949 Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman Scattering. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 73-81 Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. <i>Polymer Composites</i> , 2015 , 36, 433-438 Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2015 , 174, 456-463 Perpendicularly oriented few-layer MoSe2 on SnO2 nanotubes for efficient hydrogen evolution	4·9 3 6.7	46 9 27 90
239238237236235	Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. <i>Nano Research</i> , 2016 , 9, 2938-2949 Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman Scattering. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 73-81 Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. <i>Polymer Composites</i> , 2015 , 36, 433-438 Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2015 , 174, 456-463 Perpendicularly oriented few-layer MoSe2 on SnO2 nanotubes for efficient hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16263-16271 Eco-friendly synthesis of hierarchical ginkgo-derived carbon nanoparticles/NiAl-layered double	4·9 3 6.7	46 9 27 90 87

231	A flexible free-standing defect-rich MoS2/graphene/carbon nanotube hybrid paper as a binder-free anode for high-performance lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 43130-43140	3.7	53
230	Catalytic and antibacterial activities of green-synthesized silver nanoparticles on electrospun polystyrene nanofiber membranes using tea polyphenols. <i>Composites Part B: Engineering</i> , 2015 , 79, 217	- 1 23	52
229	Porous graphenellarbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors. <i>RSC Advances</i> , 2015 , 5, 31064-31073	3.7	35
228	High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. <i>RSC Advances</i> , 2015 , 5, 18952-18959	3.7	36
227	3D porous hybrids of defect-rich MoS2/graphene nanosheets with excellent electrochemical performance as anode materials for lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 34777-34787	3.7	52
226	Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. <i>ACS Applied Materials & Distriction (Company)</i> , 7, 226	6 9 -77	132
225	In-Situ Growth of Few-Layered MoS2 Nanosheets on Highly Porous Carbon Aerogel as Advanced Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 3140-3148	8.3	90
224	Nitrogen-doped graphene/carbon nanotube/Co3O4 hybrids: one-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. <i>RSC Advances</i> , 2015 , 5, 94615-94622	3.7	28
223	A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 18595-6	07 .7	140
222	Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23299-23306	13	60
221	Disulfide-crosslinked poly(L-glutamic acid) grafted mesoporous silica nanoparticles and their potential application in drug delivery. <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 890-894	2.2	3
220	Graphene/EAlOOH Hybrids as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of Pb(II). <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 590-596	2.2	6
219	Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. <i>Nanoscale</i> , 2015 , 7, 1037-46	7.7	64
218	Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 1301-1308	3.7	74
217	Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. <i>Journal of Hazardous Materials</i> , 2015 , 283, 730-9	12.8	180
216	Graphene Liquid Marbles as Photothermal Miniature Reactors for Reaction Kinetics Modulation. <i>Angewandte Chemie</i> , 2015 , 127, 4065-4068	3.6	18
215	Hierarchical ZnCo2 O4 @NiCo2 O4 Core-Sheath Nanowires: Bifunctionality towards High-Performance Supercapacitors and the Oxygen-Reduction Reaction. <i>Chemistry - A European Journal</i> , 2015 , 21, 10100-8	4.8	107
214	Diameter-Controlled Synthesis and Capacitive Performance of Mesoporous Dual-Layer MnO2 Nanotubes. <i>ChemNanoMat</i> , 2015 , 1, 159-166	3.5	11

213	Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. <i>Materials</i> , 2015 , 8, 6806-6848	3.5	120
212	Flexible Hybrid Membranes of NiCo2O4-Doped Carbon [email[protected]2 CoreSheath Nanostructures for High-Performance Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 134	.42 ² 134!	50 ⁵⁷
211	Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage. <i>ACS Applied Materials & Distriction</i> , 1, 27823-30	9.5	60
210	Flexible free-standing 3D porous N-doped graphenellarbon nanotube hybrid paper for high-performance supercapacitors. <i>RSC Advances</i> , 2015 , 5, 9228-9236	3.7	60
209	Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3993-6	16.4	8o
208	Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2015 , 159, 1-7	6.7	40
207	Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. <i>Journal of Colloid and Interface Science</i> , 2015 , 439, 62-8	9.3	40
206	Hierarchically Organized Nanocomposites Derived from Low-dimensional Nanomaterials for Efficient Removal of Organic Pollutants. <i>Current Organic Chemistry</i> , 2015 , 19, 498-511	1.7	5
205	One-step synthesis of graphene nanoribbon-MnOIhybrids and their all-solid-state asymmetric supercapacitors. <i>Nanoscale</i> , 2014 , 6, 4233-42	7.7	166
204	Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. <i>Nanoscale</i> , 2014 , 6, 4843-51	7.7	170
203	Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. <i>Composites Science and Technology</i> , 2014 , 91, 98-103	8.6	58
202	Studies on crystal transition of polyamide 11 nanocomposites by variable-temperature X-ray diffraction. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014 , 32, 115-122	3.5	6
201	Plasmonic Liquid Marbles: A Miniature Substrate-less SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. <i>Angewandte Chemie</i> , 2014 , 126, 5154-5158	3.6	45
200	Electrospinning of poly (Etaprolactone-co-lactide)/Pluronic blended scaffolds for skin tissue engineering. <i>Journal of Materials Science</i> , 2014 , 49, 7253-7262	4.3	29
199	Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. <i>Chemical Communications</i> , 2014 , 50, 5923-6	5.8	58
198	Electrospun fibrous membranes for efficient heavy metal removal. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	53
197	Filter paper-derived carbon fiber/polyaniline composite paper for high energy storage applications. <i>Composites Science and Technology</i> , 2014 , 101, 152-158	8.6	37
196	Synergistic effect of carbon nanotubes and layered double hydroxides on the mechanical reinforcement of nylon-6 nanocomposites. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014 , 32, 1276-1285	3.5	13

195	Synthesis of few-layered MoSIhanosheet-coated electrospun SnOIhanotube heterostructures for enhanced hydrogen evolution reaction. <i>Nanoscale</i> , 2014 , 6, 10673-9	7.7	132
194	Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 4214-22	9.5	138
193	Preparation and characterization of epoxy nanocomposites containing surface-modified graphene oxide. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	12
192	Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Applied Materials & Interfaces, 2014, 6, 12449-56	9.5	145
191	Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxidemultiwalled carbon nanotube film modified glass carbon electrode. <i>Talanta</i> , 2014 , 120, 484-90	6.2	105
190	Agglomerated carbon nanotube-induced growth of piezoelectric 3D nanoarchitectures assembled from hollow 1D nanowires of poly (vinylidene fluoride) at high pressure. <i>Composites Science and Technology</i> , 2014 , 90, 110-116	8.6	8
189	Carbon Nanotube-Based Hybrid Materials and Their Polymer Composites 2014 , 239-277		1
188	Surface modifications of halloysite nanotubes with superparamagnetic Fe3O4 nanoparticles and carbonaceous layers for efficient adsorption of dyes in water treatment. <i>Chemical Research in Chinese Universities</i> , 2014 , 30, 971-977	2.2	29
187	Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5054-8	16.4	71
186	Novel method to graft chitosan on the surface of hydroxyapatite nanoparticles via ElickIreaction. <i>Chemical Research in Chinese Universities</i> , 2014 , 30, 1063-1065	2.2	9
185	Flexible polyaniline-coated TiO//SiOIhanofiber membranes with enhanced visible-light photocatalytic degradation performance. <i>Journal of Colloid and Interface Science</i> , 2014 , 424, 49-55	9.3	53
184	Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. <i>ACS Applied Materials & mp; Interfaces</i> , 2013 , 5, 7584-91	9.5	111
183	Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. <i>Nanoscale</i> , 2013 , 5, 7312-20	7.7	161
182	Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. <i>Electrochimica Acta</i> , 2013 , 109, 269-275	6.7	113
181	Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. <i>Mikrochimica Acta</i> , 2013 , 180, 1127-1134	5.8	41
180	Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2013 , 408, 25-32	9.3	98
179	A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. <i>Electrochimica Acta</i> , 2013 , 99, 117-123	6.7	109
178	One-pot hydrothermal synthesis and reusable oil-adsorbing properties of porous carbonaceous monoliths using multi-walled carbon nanotubes as templates. <i>RSC Advances</i> , 2013 , 3, 14938	3.7	13

177	All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors. <i>Polymer Chemistry</i> , 2013 , 4, 5785	4.9	29
176	Preparation and Mechanical Properties of PLGA/ETCP Composites. <i>Polymer-Plastics Technology and Engineering</i> , 2013 , 52, 621-625		8
175	Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 226, 82-86	8.9	316
174	Electrically conductive polyaniline/polyimide nanofiber membranes prepared via a combination of electrospinning and subsequent in situ polymerization growth. <i>ACS Applied Materials & amp; Interfaces,</i> 2013 , 5, 1206-12	9.5	82
173	Electrodepositing Ag nanodendrites on layered double hydroxides modified glassy carbon electrode: Novel hierarchical structure for hydrogen peroxide detection. <i>Electrochimica Acta</i> , 2013 , 90, 400-407	6.7	50
172	Carbon nanotubes bridged with graphene nanoribbons and their use in high-efficiency dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3996-9	16.4	177
171	Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 3382-91	9.5	288
170	Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. <i>Journal of Power Sources</i> , 2013 , 243, 973-981	8.9	140
169	High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. <i>ACS Applied Materials & District Materials</i>	9.5	212
168	One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. <i>Polymer</i> , 2013 , 54, 3124-3130	3.9	49
167	Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process. <i>ACS Applied Materials & District Research (No. 1988)</i> 1, 5, 5617-22	9.5	83
166	Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-6	3.2	6
165	Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. <i>Journal of Materials Research</i> , 2013 , 28, 611-619	2.5	33
164	InnenrEktitelbild: Carbon Nanotubes Bridged with Graphene Nanoribbons and Their Use in High-Efficiency Dye-Sensitized Solar Cells (Angew. Chem. 14/2013). <i>Angewandte Chemie</i> , 2013 , 125, 4	13 <i>1</i> 2413	1
163	Carbon Nanotubes Bridged with Graphene Nanoribbons and Their Use in High-Efficiency Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2013 , 125, 4088-4091	3.6	19
162	Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems. <i>Materials Chemistry and Physics</i> , 2012 , 134, 623-630	4.4	57
161	A review on hybridization modification of graphene and its polymer nanocomposites. <i>Science Bulletin</i> , 2012 , 57, 3010-3021		42
160	Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Applied Materials & amp; Interfaces, 2012, 4, 2242-9	9.5	171

159	Morphology-controlled synthesis of porous polymer nanospheres for gas absorption and bioimaging applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9861		27
158	Electrospun self-standing membrane of hierarchical SiO2@FAlOOH (boehmite) core/sheath fibers for water remediation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2012 , 4, 5353-9	9.5	92
157	Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25108		195
156	Synthesis of Fe nanoparticles@graphene composites for environmental applications. <i>Journal of Hazardous Materials</i> , 2012 , 225-226, 63-73	12.8	188
155	Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24	27-243	34 ¹⁵⁶
154	Polymorphism of electrospun polyvinylidene difluoride/carbon nanotube (CNT) nanocomposites: Synergistic effects of CNT surface chemistry, extensional force and supercritical carbon dioxide treatment. <i>Polymer</i> , 2012 , 53, 5097-5102	3.9	19
153	A novel approach for transferring water-dispersible graphene nanosheets into organic media. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11748		23
152	Poly(vinly alcohol)/nano-sized layered double hydroxides nanocomposite hydrogels prepared by cyclic freezing and thawing. <i>Macromolecular Research</i> , 2012 , 20, 568-577	1.9	15
151	Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP In water <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	35
150	The preparation of graphene hybrid films decorated with poly[2-methoxy-5-(2?-ethyl-hexyloxy)-1,4-phenylene vinylene] particles prepared by non-solvent induced precipitation. <i>Carbon</i> , 2012 , 50, 216-224	10.4	26
149	RECENT PROGRESS IN HIERARCHICALLY ORGANIZED POLYMER NANOCOMPOSITES BASED ON ELECTROSPUN NANOFIBERS. <i>Acta Polymerica Sinica</i> , 2012 , 012, 801-811		4
148	Fabrication and Characterization of Ultrathin Graphene Oxide/Poly(Vinyl Alcohol) Composite Films via Layer-by-Layer Assembly. <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 1098-1107	1.4	13
147	One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. <i>Applied Surface Science</i> , 2011 , 258, 1132-1138	6.7	99
146	Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 2779-85	9.5	172
145	Facile preparation of poly(vinyl alcohol) nanocomposites with pristine layered double hydroxides. <i>Materials Chemistry and Physics</i> , 2011 , 130, 890-896	4.4	42
144	Fabrication and characterization of transparent ZnOBiO2/silicone nanocomposites with tunable emission colors. <i>Composites Part B: Engineering</i> , 2011 , 42, 2105-2110	10	24
143	Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. <i>Composites Part B: Engineering</i> , 2011 , 42, 2130-2135	10	117
142	High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. <i>Composites Science and Technology</i> , 2011 , 71, 1556-1562	8.6	78

A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction.

sheets. ACS Applied Materials & Therfaces, 2010, 2, 3702-8

In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene

3.4

9.5

54

188

Nanotechnology, 2010, 21, 335701

125

124

123	Langmuir-Blodgett films of pyridyldithio-modified multiwalled carbon nanotubes as a support to immobilize hydrogenase. <i>Langmuir</i> , 2010 , 26, 10259-65	4	29
122	Crystallization Behavior of Poly(vinylidene fluoride) Nanocomposites Containing Multiwalled Carbon Nanotubes. <i>Journal of Macromolecular Science - Physics</i> , 2010 , 49, 1069-1082	1.4	20
121	Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 16766-72	3.4	83
120	Green and Highly Efficient Functionalization of Carbon Nanotubes by Combination of 1,3-Dipolar Cycloaddition and Curtius Rearrangement Reactions. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 1223-1228	4.9	1
119	Crystallization behavior of poly(Eaprolactone)/layered double hydroxide nanocomposites. <i>Journal of Applied Polymer Science</i> , 2010 , 116, NA-NA	2.9	148
118	Facile fabrication of polystyrene/carbon nanotube composite nanospheres with core-shell structure via self-assembly. <i>Polymer</i> , 2010 , 51, 3715-3721	3.9	20
117	Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films. <i>Thin Solid Films</i> , 2010 , 518, 7081-7085	2.2	20
116	Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. <i>Thermochimica Acta</i> , 2010 , 502, 1-7	2.9	60
115	Preparation, morphology, and biolabeling of fluorescent nanoparticles based on conjugated polymers by emulsion polymerization. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 4867-4874	2.5	17
114	Grafting polyamide 6 onto multi-walled carbon nanotubes using microwave irradiation. <i>Polymer International</i> , 2010 , 59, 1346-1349	3.3	5
113	Effect of film thickness controlled by ink-jet printing method on the optical properties of an electroluminescent polymer. <i>Polymers for Advanced Technologies</i> , 2010 , 21, 381-385	3.2	8
112	Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing multiwalled carbon nanotubes. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 644-650	2.9	41
111	Multiwalled carbon nanotube nucleated crystallization behavior of biodegradable poly(butylene succinate) nanocomposites. <i>Journal of Applied Polymer Science</i> , 2009 , 111, 2938-2945	2.9	36
110	Synthesis, characterization and self-assembly behavior in water as fluorescent sensors of cationic water-soluble conjugated polyfluorene-b-poly(N-isopropylacrylamide) diblock copolymers. <i>Polymer</i> , 2009 , 50, 1236-1245	3.9	23
109	Preparation and mechanical properties of exfoliated CoAl layered double hydroxide (LDH)/polyamide 6 nanocomposites by in situ polymerization. <i>Composites Science and Technology</i> , 2009 , 69, 991-996	8.6	72
108	Synthesis and characterization of fluorene-based roddoil liquid crystal polymers. <i>Polymers for Advanced Technologies</i> , 2009 , 20, 104-110	3.2	5
107	Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding. <i>Polymer Engineering and Science</i> , 2009 , 49, 1063-1068	2.3	59
106	ATRP Synthesis of poly(4-bromostyrene)-b-poly(propylene glycol) block copolymer and its self-assembly in catalystic emulsion polymerization to form luminescent nanospheres with core-shell structure. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1478-1483	2.5	4

105	The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. <i>Wear</i> , 2009 , 266, 713-720	3.5	95
104	Controlled Radical Synthesis of Fluorene-Based Blue-Light-Emitting Copolymer Nanospheres with CoreBhell Structure via Self-Assembly. <i>Macromolecules</i> , 2009 , 42, 4993-5000	5.5	16
103	Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 9741-8	3.4	128
102	Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 15225-30	3.4	81
101	Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer. Journal of Physical Chemistry B, 2009, 113, 1857-68	3.4	53
100	Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites. <i>Materials Chemistry and Physics</i> , 2008 , 109, 547-555	4.4	46
99	Microdeformation and Fracture Mechanisms in Polyamide-6/Organoclay Nanocomposites. <i>Macromolecules</i> , 2008 , 41, 193-202	5.5	59
98	Effect of Ultrasonication on Optical Properties and Electronic States of Conjugated Polymer MEH-PPV. <i>Chemical Research in Chinese Universities</i> , 2008 , 24, 653-657	2.2	2
97	Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. <i>Langmuir</i> , 2008 , 24, 13621-6	4	132
96	Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites. <i>Polymers and Polymer Composites</i> , 2008 , 16, 501-507	0.8	22
95	A study on the double melting behavior of poly(trimethylene terephthalate). <i>Science Bulletin</i> , 2008 , 53, 2145-2155	10.6	5
94	Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 790-802	2.5	46
93	Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 1654-	1660	22
92	Nonisothermal crystallization kinetics of poly(ethylene terephthalate)/antimony-doped tin oxide nanocomposites. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 3753-3762	2.9	10
91	Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. <i>Composites Science and Technology</i> , 2008 , 68, 2498-2502	8.6	104
90	Side-chain effect on the structural evolution and properties of poly(9,9-dihexylfluorene-alt-2,5-dialkoxybenzene) copolymers. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 7747-55	3.4	24
89	Effect of clay addition on the morphology and thermal behavior of polyamide 6. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1191-1199	2.9	48
88	Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 81, 343-5	5 ð ·5	55

(2006-2007)

87	Dual-color polymer light-emitting diodes based on hybrid films of soluble poly(p-phenylenevinylene) derivatives. <i>Thin Solid Films</i> , 2007 , 515, 7930-7934	2.2	2
86	Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. <i>Composites Science and Technology</i> , 2007 , 67, 406-412	8.6	106
85	Probing buried carbon nanotubes within polymerflanotube composite matrices by atomic force microscopy. <i>European Polymer Journal</i> , 2007 , 43, 4136-4142	5.2	19
84	Morphological effect on spectral property of poly(9,9-dihexylfluorene-alt-2,5-dihexyloxybenzene) films. <i>European Polymer Journal</i> , 2007 , 43, 4613-4618	5.2	2
83	Nonisothermal crystallization and melting behavior of a luminescent conjugated polymer, poly(9,9-dihexylfluorene-alt-co-2,5-didecyloxy-1,4-phenylene). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 976-987	2.6	14
82	Nonisothermal crystallization behavior of a luminescent conjugated polymer, poly(9,9-dihexylfluorene-alt-2,5-didodecyloxybenzene). <i>Polymer International</i> , 2007 , 56, 245-251	3.3	4
81	Side-chain effects on the morphology and properties of fluorene-based alternating copolymers. <i>Polymer International</i> , 2007 , 56, 996-1005	3.3	12
80	Epoxy resin containing poly(ethylene oxide)-block-poly(e-caprolactone) diblock copolymer: Effect of curing agents on nanostructures. <i>Polymer</i> , 2006 , 47, 7590-7600	3.9	78
79	The photophysical properties and morphology of fluorene-alt-benzene based conjugated polymer. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2006 , 1, 130-137		1
78	Morphology and melt rheology of nylon 11/clay nanocomposites. <i>Journal of Applied Polymer Science</i> , 2006 , 102, 542-549	2.9	52
77	Nanoindentation and Morphological Studies of Epoxy Nanocomposites. <i>Macromolecular Materials and Engineering</i> , 2006 , 291, 1358-1366	3.9	64
76	Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites. <i>Advanced Materials</i> , 2006 , 18, 73-77	24	157
75	Embrittlement Mechanisms of Nylon 66/Organoclay Nanocomposites Prepared by Melt-Compounding Process. <i>Materials and Manufacturing Processes</i> , 2006 , 21, 153-158	4.1	8
74	ATRP Synthesis of Oligofluorene-Based Liquid Crystalline Conjugated Block Copolymers. <i>Macromolecules</i> , 2006 , 39, 1364-1375	5.5	21
73	Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation. <i>Macromolecules</i> , 2006 , 39, 5072-5080	5.5	170
72	Photophysical properties and morphology of fluorene-alt-benzene based conjugated polymers. <i>Polymers for Advanced Technologies</i> , 2006 , 17, 544-551	3.2	11
71	Solid state 19F NMR study of crystal transformation in PVDF and its nanocomposites. <i>Polymer Engineering and Science</i> , 2006 , 46, 1684-1690	2.3	12
70	Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites. <i>Polymer International</i> , 2006 , 55, 71-79	3.3	108

69	Optimization of opto-electronic property and device efficiency of polyfluorenes by tuning structure and morphology. <i>Polymer International</i> , 2006 , 55, 473-490	3.3	100
68	Synthesis and characterization of poly(arylene ether ketone) (co)polymers containing sulfonate groups. <i>Polymer</i> , 2006 , 47, 4148-4153	3.9	29
67	Thermooxidative stability of spectra of fluorene-based copolymers. <i>Polymer</i> , 2006 , 47, 4816-4823	3.9	36
66	Nanoindentation studies on polymorphism of nylon 6. <i>Polymer Testing</i> , 2006 , 25, 249-253	4.5	33
65	Nanoindentation studies on Nylon 11/clay nanocomposites. <i>Polymer Testing</i> , 2006 , 25, 492-497	4.5	86
64	Polyfluorene-Based Light-Emitting Rod [Ioil Block Copolymers. <i>Macromolecules</i> , 2005 , 38, 8494-8502	5.5	83
63	Fracture behaviour of poly(ethylene terephthalate) fiber toughened epoxy composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2005 , 36, 1167-1173	8.4	20
62	Melt-Processable Poly(Etherimide) Nanocomposites From Natural Montmorillonite. <i>Materials Research Innovations</i> , 2005 , 9, 46-47	1.9	2
61	Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. <i>Polymer Degradation and Stability</i> , 2005 , 90, 123-131	4.7	378
60	Polishing effect on nanoindentation behavior of nylon 66 and its nanocomposites. <i>Polymer Testing</i> , 2005 , 24, 746-749	4.5	41
59	Morphology and photophysical properties of phenyleneethynylene oligomer. <i>Polymer</i> , 2005 , 46, 10952-	-130959) 13
58	Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. <i>Polymer</i> , 2005 , 46, 11969-11977	3.9	58
57	Fracture and toughening behavior of aramid fiber/epoxy composites. <i>Polymer Composites</i> , 2005 , 26, 33:	3 3 342	9
56	Crystal transformation and thermomechanical properties of poly(vinylidene fluoride)/clay nanocomposites. <i>Polymer International</i> , 2005 , 54, 226-232	3.3	129
55	Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. <i>Polymer International</i> , 2005 , 54, 456-464	3.3	105
54	Nylon 66/Organoclay Nanocomposites: I. Preparation, Morphology, Thermal And Mechanical Properties. <i>Materials Research Innovations</i> , 2004 , 8, 159-160	1.9	7
53	Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1823-1830	2.6	48
52	Deformation mechanisms of nanoclay-reinforced maleic anhydride-modified polypropylene. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2004 , 42, 2759-2768	2.6	22

(2001-2004)

51	A processing-induced clay dispersion and its effect on the structure and properties of polyamide 6. <i>Polymer International</i> , 2004 , 53, 392-399	3.3	65
50	Crystallization and melting behavior of polyester/clay nanocomposites. <i>Polymer International</i> , 2004 , 53, 1282-1289	3.3	59
49	Moisture sorption and permeation in polyamide 6/clay nanocomposite films. <i>Polymer International</i> , 2004 , 53, 1973-1978	3.3	14
48	Polymer Nanocomposites Using Urchin-Shaped Carbon Nanotube-Silica Hybrids as Reinforcing Fillers. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1860-1864	4.8	31
47	Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. <i>Polymer</i> , 2004 , 45, 3341-3349	3.9	154
46	Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. <i>Polymer</i> , 2004 , 45, 8221-8229	3.9	86
45	Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. <i>Macromolecules</i> , 2004 , 37, 256-259	5.5	415
44	Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. <i>Macromolecules</i> , 2004 , 37, 7214-7222	5.5	699
43	Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. <i>Journal of Applied Polymer Science</i> , 2004 , 94, 1236-1244	2.9	139
42	Thermal degradation behavior of polyamide 6/clay nanocomposites. <i>Polymer Degradation and Stability</i> , 2003 , 81, 47-56	4.7	171
41	Preparation and characterization of nylon 11/organoclay nanocomposites. <i>Polymer</i> , 2003 , 44, 3529-353	5 3.9	172
40	Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. <i>Composites Science and Technology</i> , 2003 , 63, 331-337	8.6	156
39	Melting behavior of isotactic polystyrene revealed by differential scanning calorimetry and transmission electron microscopy. <i>European Polymer Journal</i> , 2003 , 39, 1311-1317	5.2	17
38	Synthesis, Characterization, and Physical Properties of Monodisperse Oligo(p-phenyleneethynylene)s. <i>Macromolecules</i> , 2003 , 36, 1457-1464	5.5	45
37	Micro- and nanomorphologies of isotactic polystyrene revealed by PLM, AFM, and TEM. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 422-427	2.9	1
36	Transmission electron microscopy observations on fine structures of shish-kebab crystals of isotactic polystyrene by partial melting. <i>Journal of Crystal Growth</i> , 2002 , 243, 218-223	1.6	17
35	Bulk Viscosity and Its Unstable Behavior upon Storage in Polyimide Precursor Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4266-4272	3.9	10
34	Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. <i>Polymer</i> , 2001 , 42, 645.	336946′	133

33	Morphology and Melting Behavior of Lamellar Overgrowths after Heat Treatments of Isotactic Polystyrene. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 2921-2925	2.6	7
32	Transmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene. <i>Macromolecules</i> , 2001 , 34, 4305-4307	5.5	37
31	DSC and TEM investigations on multiple melting phenomena in isotactic polystyrene. <i>Journal of Materials Science</i> , 2000 , 35, 5047-5055	4.3	47
30	Crystal structure and drawing-induced polymorphism in poly(aryl ether ether ketone). IV. <i>Journal of Applied Polymer Science</i> , 1999 , 73, 237-243	2.9	15
29	Nonisothermal crystallization kinetics of poly(Ehydroxybutyrate). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 1305-1312	2.6	55
28	Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. <i>Journal of Applied Polymer Science</i> , 1998 , 67, 815-821	2.9	129
27	Influence of annealing on structure of poly(aryl ether ether ketone ketone) revealed by SAXS. Journal of Applied Polymer Science, 1998 , 69, 1829-1835	2.9	2
26	Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK 1998 , 67, 815		5
25	Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). <i>Polymer Engineering and Science</i> , 1997 , 37, 568-575	2.3	690
24	The crystal structure and drawing-induced polymorphism in poly(aryl ether ketone)s, 2. Poly(ether ether ketone ketone), PEEKK. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 969-982	2.6	8
23	Crystal structure and crystallinity of poly(aryl ether biphenyl ether ketone ketone). <i>Macromolecular Rapid Communications</i> , 1997 , 18, 23-30	4.8	2
22	The crystal structure and drawing induced polymorphism in poly(aryl ether ketone)s, 3. Crystallization during hot-drawing of poly(ether ether ketone ketone). <i>Macromolecular Rapid Communications</i> , 1997 , 18, 83-91	4.8	4
21	Crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. <i>Journal of Applied Polymer Science</i> , 1997 , 64, 1451-1461	2.9	6
20	Variation of crystallographic parameters in PEEKK with heat treatment temperature. <i>European Polymer Journal</i> , 1997 , 33, 913-918	5.2	5
19	Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). <i>European Polymer Journal</i> , 1997 , 33, 1405-1414	5.2	65
18	Crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK 1997 , 64, 1451		1
17	X-ray crystallographic structure of cyclic tetramer ester based on bisphenol-A and o-phthaloyldichloride. <i>Polymer</i> , 1996 , 37, 3427-3429	3.9	8
16	Nitrogen-coordinated single-atom catalysts with manganese and cobalt sites for acidic oxygen reduction. <i>Journal of Materials Chemistry A</i> ,	13	4

LIST OF PUBLICATIONS

15	Self-assembled carbon nanoribbons with the heteroatom doping used as ultrafast charging cathodes in zinc-ion hybrid supercapacitors. <i>Science China Materials</i> ,1	7.1	1
14	Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. <i>Advanced Fiber Materials</i> ,1	10.9	6
13	Cryo-spun encapsulation of polyaniline-based conducting hydrogels with high sensitivity, wide-range linearity, and environmental stability for fibrous strain sensors. <i>Journal of Polymer Science</i> ,	2.4	1
12	Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials. <i>Chinese Journal of Polymer Science (English Edition)</i> ,1	3.5	1
11	Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. <i>Science China Materials</i> ,1	7.1	0
10	Physical Origin of Distinct Mechanical Properties of Polymer Tethered Graphene Nanosheets Reinforced Polymer Nanocomposites Revealed by Nonequilibrium Molecular Dynamics Simulations. <i>Macromolecular Theory and Simulations</i> ,2100044	1.5	2
9	Metal Drganic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium Bulfur Batteries. <i>Energy & amp; Fuels</i> ,	4.1	4
8	Electrospun Biopolymer Nanofibers and Their Composites for Drug Delivery Applications275-298		1
7	Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with <code>[layer-Strut]Bracing</code> Microscopic Architecture for Efficient Energy Storage. <i>Advanced Fiber Materials</i> ,1	10.9	2
6	Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. <i>Science China Materials</i> ,1	7.1	3
5	Polyimide Aerogel Fibers with Controllable Porous Microstructure for Super-Thermal Insulation Under Extreme Environments. <i>Advanced Fiber Materials</i> ,1	10.9	2
4	A Waterproof Ion-Conducting Fluorinated Elastomer with 6000% Stretchability, Superior Ionic Conductivity, and Harsh Environment Tolerance. <i>Advanced Functional Materials</i> ,2112293	15.6	10
3	High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. <i>Science China Materials</i> ,1	7.1	1
2	In-Situ Constructing Polyether-Based Composite Electrolyte with Bi-Phase Ion Conductivity and Stable Electrolyte/Electrode Interphase for Solid-State Lithium Metal Batteries. <i>Journal of Materials Chemistry A</i> ,	13	1
1	Highly Stretchable, Ultra-Soft, and Fast Self-Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors. <i>Advanced Functional Materials</i> ,2204366	15.6	5