
Daniel S. Correa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospinning-based (bio)sensors for food and agricultural applications: A review. TrAC - Trends in Analytical Chemistry, 2017, 91, 91-103.	5.8	204
2	Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine. ACS Applied Materials & Interfaces, 2015, 7, 4784-4790.	4.0	185
3	Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 45673-45701.	4.0	144
4	Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta, 2017, 167, 59-66.	2.9	140
5	Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Materials and Design, 2018, 156, 154-166.	3.3	128
6	Perylene Derivatives with Large Two-Photon-Absorption Cross-Sections for Application in Optical Limiting and Upconversion Lasing. Advanced Materials, 2005, 17, 1890-1893.	11.1	118
7	Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles. Carbohydrate Polymers, 2019, 212, 235-241.	5.1	112
8	Probing Chitosan and Phospholipid Interactions Using Langmuir and Langmuirâ^'Blodgett Films as Cell Membrane Models. Langmuir, 2007, 23, 7666-7671.	1.6	104
9	A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano, 2020, 7, 3710-3734.	2.2	88
10	Z-scan theoretical analysis for three-, four- and five-photon absorption. Optics Communications, 2007, 277, 440-445.	1.0	87
11	Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensors and Actuators B: Chemical, 2017, 238, 795-801.	4.0	81
12	One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H 2 O 2. Applied Surface Science, 2017, 407, 162-170.	3.1	79
13	A review on chemiresistive ZnO gas sensors. Sensors and Actuators Reports, 2022, 4, 100100.	2.3	75
14	Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing. Biosensors, 2017, 7, 61.	2.3	73
15	Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II). Carbohydrate Polymers, 2019, 207, 747-754.	5.1	73
16	Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing. ACS Applied Nano Materials, 2019, 2, 4026-4042.	2.4	70
17	Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17α – Ethinylestradiol electrochemical detection. Applied Surface Science, 2018, 458, 431-437.	3.1	69
18	A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sensors, 2021, 6, 2473-2496	4.0	69

#	Article	IF	CITATIONS
19	Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Applied Surface Science, 2018, 443, 18-23.	3.1	68
20	Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 2148-2156.	0.9	67
21	Nanostructured Conjugated Polymers in Chemical Sensors: Synthesis, Properties and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 6509-6527.	0.9	63
22	Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L. Applied Physics A: Materials Science and Processing, 2008, 90, 633-636.	1.1	61
23	Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta, 2019, 194, 611-618.	2.9	60
24	Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 176-186.	1.9	59
25	Enhanced and selective ammonia detection using In2O3/reduced graphene oxide hybrid nanofibers. Applied Surface Science, 2019, 473, 133-140.	3.1	59
26	Characterization of Buriti (Mauritia flexuosa L.) oil by absorption and emission spectroscopies. Journal of the Brazilian Chemical Society, 2005, 16, 1113.	0.6	58
27	Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring and Management, 2015, 3, 22-29.	1.7	58
28	Two-Photon Polymerization for Fabricating Structures Containing the Biopolymer Chitosan. Journal of Nanoscience and Nanotechnology, 2009, 9, 5845-5849.	0.9	55
29	Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. Materials Science and Engineering C, 2020, 107, 110334.	3.8	55
30	Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. International Journal of Biological Macromolecules, 2020, 142, 521-534.	3.6	53
31	Layer-by-Layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 17α-ethinylestradiol. Journal of Electroanalytical Chemistry, 2015, 755, 215-220.	1.9	52
32	Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution:Â A Competition between Two-Photon and Saturated Absorption Processes. Journal of Physical Chemistry B, 2004, 108, 5221-5224.	1.2	51
33	Investigation of the Two-Photon Absorption Cross-Section in Perylene Tetracarboxylic Derivatives: Nonlinear Spectra and Molecular Structure. Journal of Physical Chemistry A, 2006, 110, 6433-6438.	1.1	50
34	Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent. New Journal of Chemistry, 2017, 41, 9087-9094.	1.4	50
35	Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: Use in an electronic tongue for heavy metal detection. Sensors and Actuators B: Chemical, 2019, 290, 387-395.	4.0	50
36	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50

#	Article	IF	CITATIONS
37	Modification of electrospun nylon nanofibers using layer-by-layer films for application in flow injection electronic tongue: Detection of paraoxon pesticide in corn crop. Sensors and Actuators B: Chemical, 2012, 171-172, 249-255.	4.0	49
38	Recent trends in nanozymes design: from materials and structures to environmental applications. Materials Chemistry Frontiers, 2021, 5, 7419-7451.	3.2	49
39	Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer. Applied Physics Letters, 2009, 95, .	1.5	48
40	Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue. ACS Applied Materials & Interfaces, 2017, 9, 19646-19652.	4.0	47
41	Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega, 2017, 2, 6975-6983.	1.6	46
42	Nanostructured Antimicrobials in Food Packaging—Recent Advances. Biotechnology Journal, 2019, 14, e1900068.	1.8	46
43	Biocompatible and Biodegradable Electrospun Nanofibrous Membranes Loaded with Grape Seed Extract for Wound Dressing Application. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	45
44	Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Advances, 2015, 5, 73875-73881.	1.7	44
45	Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices. Lab on A Chip, 2016, 16, 70-74.	3.1	44
46	Electrostatic Interactions Are Not Sufficient to Account for Chitosan Bioactivity. ACS Applied Materials & amp; Interfaces, 2010, 2, 246-251.	4.0	43
47	Sensitive and Selective NH3 Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate). Sensors, 2018, 18, 1058.	2.1	43
48	Tailoring the Surface Properties of Micro/Nanofibers Using 0D, 1D, 2D, and 3D Nanostructures: A Review on Postâ€Modification Methods. Advanced Materials Interfaces, 2021, 8, 2100430.	1.9	42
49	Postharvest Quality of Fresh-Cut Carrots Packaged in Plastic Films Containing Silver Nanoparticles. Food and Bioprocess Technology, 2016, 9, 637-649.	2.6	40
50	Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Materials Research Express, 2020, 7, 015601.	0.8	40
51	Two-photon absorption cross-section spectrum of a ï€-conjugated polymer obtained using the white-light continuum Z-scan technique. Applied Physics Letters, 2006, 88, 021911.	1.5	39
52	Nanoscaled Platforms Based on SiO2 and Al2O3 Impregnated with Potassium Permanganate Use Color Changes to Indicate Ethylene Removal. Food and Bioprocess Technology, 2017, 10, 1622-1630.	2.6	39
53	Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. Journal of Materials Science, 2017, 52, 1919-1929.	1.7	38
54	Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1532-1539.	2.0	37

#	Article	IF	CITATIONS
55	Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 309-317.	2.0	37
56	Biocompatible electrospun nanofibers containing cloxacillin: Antibacterial activity and effect of pH on the release profile. Reactive and Functional Polymers, 2018, 132, 26-35.	2.0	37
57	Nanofibers interfaces for biosensing: Design and applications. Sensors and Actuators Reports, 2021, 3, 100048.	2.3	35
58	Excited state absorption spectrum of chlorophyll a obtained with white-light continuum. Journal of Chemical Physics, 2007, 126, 165102.	1.2	34
59	Excited states absorption spectra of porphyrins – Solvent effects. Chemical Physics Letters, 2013, 587, 118-123.	1.2	33
60	Layer-by-layer fabrication of AgCl–PANI hybrid nanocomposite films for electronic tongues. Physical Chemistry Chemical Physics, 2014, 16, 24275-24281.	1.3	33
61	Extent of shielding by counterions determines the bactericidal activity of N,N,N-trimethyl chitosan salts. Carbohydrate Polymers, 2016, 137, 418-425.	5.1	33
62	Interaction of O-acylated chitosans with biomembrane models: Probing the effects from hydrophobic interactions and hydrogen bonding. Colloids and Surfaces B: Biointerfaces, 2014, 114, 53-59.	2.5	32
63	Low molecular-weight chitosans are stronger biomembrane model perturbants. Colloids and Surfaces B: Biointerfaces, 2013, 104, 48-53.	2.5	31
64	Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. Chemosensors, 2020, 8, 87.	1.8	31
65	Three―and Fourâ€Photon Excitation of Poly(2â€methoxyâ€5â€{2′â€ethylhexyloxy)â€1,4â€phenylenevinyle Advanced Materials, 2007, 19, 2653-2656.	ne) (MEH:	â€₽₽V).
66	Fluorescent PMMA/MEHâ€PPV electrospun nanofibers: Investigation of morphology, solvent, and surfactant effect. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1388-1394.	2.4	30
67	Bio-inspired sensor for insect pheromone analysis based on polyaniline functionalized AFM cantilever sensor. Sensors and Actuators B: Chemical, 2014, 191, 643-649.	4.0	30
68	An electronic tongue based on conducting electrospun nanofibers for detecting tetracycline in milk samples. RSC Advances, 2016, 6, 103740-103746.	1.7	30
69	Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces. Photonics, 2017, 4, 8.	0.9	30
70	Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. Journal of Applied Polymer Science, 2018, 135, 46128.	1.3	29
71	Wireless Tags with Hybrid Nanomaterials for Volatile Amine Detection. ACS Sensors, 2021, 6, 2457-2464.	4.0	29
72	Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications. Optics and Laser Technology, 2018, 101, 74-79.	2.2	28

#	Article	IF	CITATIONS
73	Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydrate Polymers, 2017, 155, 146-151.	5.1	27
74	Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sensors and Actuators B: Chemical, 2022, 353, 131114.	4.0	27
75	Fabrication of zinc oxide nanowires/polymer composites by twoâ€photon polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 333-337.	2.4	26
76	Experimental evidence for the mode of action based on electrostatic and hydrophobic forces to explain interaction between chitosans and phospholipid Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2016, 145, 201-207.	2.5	26
77	ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): Evaluation of humidity sensing properties. Journal of Alloys and Compounds, 2018, 767, 1022-1029.	2.8	26
78	Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques. Materials Chemistry Frontiers, 2021, 5, 5658-5670.	3.2	26
79	Smart choices: Mechanisms of intelligent food packaging. Current Research in Food Science, 2021, 4, 932-936.	2.7	26
80	Femtosecond laser processing of glassy and polymeric matrices containing metals and semiconductor nanostructures. Optical Materials, 2013, 35, 2643-2648.	1.7	25
81	Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	25
82	Voltammetric cadmium(II) sensor based onÂa fluorine doped tin oxide electrode modified with polyamide 6/chitosan electrospun nanofibers and gold nanoparticles. Mikrochimica Acta, 2017, 184, 1077-1084.	2.5	25
83	Reverse saturable absorption in chlorophyll A solutions. Applied Physics B: Lasers and Optics, 2002, 74, 559-561.	1.1	24
84	Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2, 490-519.	1.7	24
85	Experimental and theoretical study of two-photon absorption in nitrofuran derivatives: Promising compounds for photochemotherapy. Journal of Chemical Physics, 2011, 134, 014509.	1.2	23
86	Emission features of microstructures fabricated by two-photon polymerization containing three organic dyes. Optical Materials Express, 2012, 2, 1803.	1.6	23
87	Controlled Release of Silver Nanoparticles Contained in Photoresponsive Nanogels. ACS Applied Bio Materials, 2019, 2, 644-653.	2.3	23
88	Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold. Polymers for Advanced Technologies, 2020, 31, 1437-1443.	1.6	23
89	Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application. Reactive and Functional Polymers, 2021, 163, 104889.	2.0	23
90	Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa. Environmental Monitoring and Assessment, 2017, 189, 352.	1.3	22

#	Article	IF	CITATIONS
91	Impedimetric electronic tongue based on molybdenum disulfide and graphene oxide for monitoring antibiotics in liquid media. Talanta, 2020, 217, 121039.	2.9	21
92	Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon, 2022, 8, e09803.	1.4	21
93	Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore. Polymer, 2008, 49, 1562-1566.	1.8	20
94	Electrochemical Detection of Bisphenol A by Tyrosinase Immobilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. Electrochem, 2021, 2, 41-49.	1.7	20
95	Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles. Optics Express, 2012, 20, 21107.	1.7	19
96	Free-standing SiO ₂ /TiO ₂ –MoS ₂ composite nanofibrous membranes as nanoadsorbents for efficient Pb(<scp>ii</scp>) removal. New Journal of Chemistry, 2020, 44, 13030-13035.	1.4	19
97	Composite nanofibers membranes produced by solution blow spinning modified with CO2-activated sugarcane bagasse fly ash for efficient removal of water pollutants. Journal of Cleaner Production, 2021, 285, 125376.	4.6	19
98	Discriminative detection of volatile organic compounds using an electronic nose based on TiO2 hybrid nanostructures. Sensors and Actuators B: Chemical, 2021, 344, 130124.	4.0	19
99	Rational hydrothermal synthesis of graphene quantum dots with optimized luminescent properties for sensing applications. Materials Today Chemistry, 2022, 23, 100755.	1.7	19
100	Combining Coaxial Electrospinning and 3D Printing: Design of Biodegradable Bilayered Membranes with Dual Drug Delivery Capability for Periodontitis Treatment. ACS Applied Bio Materials, 2022, 5, 146-159.	2.3	19
101	Investigation of nanotoxicological effects of nanostructured hydroxyapatite to microalgae Pseudokirchneriella subcapitata. Ecotoxicology and Environmental Safety, 2017, 144, 138-147.	2.9	18
102	Electronic Tongues for Inedible Media. Sensors, 2019, 19, 5113.	2.1	18
103	Potentiometric E-Tongue System for Geosmin/Isoborneol Presence Monitoring in Drinkable Water. Sensors, 2020, 20, 821.	2.1	18
104	Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports, 2022, 4, 100068.	2.3	18
105	Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Materials Science and Engineering C, 2020, 117, 111315.	3.8	17
106	Random laser in dye-doped electrospun nanofibers: Study of laser mode dynamics via temporal mapping of emission spectra using Pearson's correlation. Journal of Luminescence, 2020, 224, 117281.	1.5	17
107	Cellulose Whiskers Influence the Morphology and Antibacterial Properties of Silver Nanoparticles Composites. Journal of Nanoscience and Nanotechnology, 2018, 18, 4876-4883.	0.9	16
108	Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning. Sensors and Actuators B: Chemical, 2021, 336, 129696.	4.0	16

#	Article	IF	CITATIONS
109	Visually imperceptible mechanical damage of harvested tomatoes changes ethylene production, color, enzyme activity, and volatile compounds profile. Postharvest Biology and Technology, 2021, 176, 111503.	2.9	16
110	Twoâ€photon excitation and optical limiting in polyfluorene derivatives. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 148-153.	2.4	15
111	Efavirenz dissolution enhancement III: Colloid milling, pharmacokinetics and electronic tongue evaluation. European Journal of Pharmaceutical Sciences, 2017, 99, 310-317.	1.9	15
112	A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature. Synthetic Metals, 2017, 233, 22-27.	2.1	15
113	Advances in 3D printed sensors for food analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116672.	5.8	15
114	Cantilever Nanobiosensor Functionalized with Tyrosinase for Detection of Estrone and β-estradiol in Water. Applied Biochemistry and Biotechnology, 2020, 190, 1512-1524.	1.4	14
115	Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study. Optical Materials, 2012, 34, 1013-1018.	1.7	13
116	The Effect of ZnO Nanoparticles Morphology on the Toxicity Towards Microalgae <i>Pseudokirchneriella subcapitata</i> . Journal of Nanoscience and Nanotechnology, 2020, 20, 48-63.	0.9	13
117	Nanochitin-based composite films as a disposable ethanol sensor. Journal of Environmental Chemical Engineering, 2020, 8, 104163.	3.3	13
118	Development of an Electronic Tongue Based on a Nanocomposite for Discriminating Flavor Enhancers and Commercial Salts. IEEE Sensors Journal, 2021, 21, 1250-1256.	2.4	13
119	Characterization of two- and three-photon absorption of polyfluorene derivatives. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 747-754.	2.4	12
120	Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth. Materials Science and Engineering C, 2014, 35, 185-189.	3.8	12
121	Chemical sensors based onÂhybrid nanomaterials for food analysis. , 2017, , 205-244.		12
122	Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release. Journal of Polymers and the Environment, 2019, 27, 794-802.	2.4	12
123	Dye Adsorption Capacity of MoS ₂ Nanoflakes Immobilized on Poly(lactic acid) Fibrous Membranes. ACS Applied Nano Materials, 2021, 4, 4881-4894.	2.4	12
124	Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer. Optical Materials Express, 2013, 3, 21.	1.6	11
125	Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues. Optics and Laser Technology, 2015, 69, 148-153.	2.2	11
126	Excited-state absorption of meso-tetrasulfonatophenyl porphyrin: Effects of pH and micelles. Optical Materials, 2015, 42, 516-521.	1.7	11

#	Article	IF	CITATIONS
127	Acylated Carrageenan Changes the Physicochemical Properties of Mixed Enzyme–Lipid Ultrathin Films and Enhances the Catalytic Properties of Sucrose Phosphorylase Nanostructured as Smart Surfaces. Journal of Physical Chemistry B, 2016, 120, 5359-5366.	1.2	11
128	Femtosecond lasers for processing glassy and polymeric materials. Materials Research, 2014, 17, 352-358.	0.6	10
129	Tuning the Electrical Properties of Electrospun Nanofibers with Hybrid Nanomaterials for Detecting Isoborneol in Water Using an Electronic Tongue. Surfaces, 2019, 2, 432-443.	1.0	10
130	The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium. Scientific Reports, 2019, 9, 1993.	1.6	10
131	Effects of silver nanoparticles prenatal exposure on rat offspring development. Environmental Toxicology and Pharmacology, 2021, 81, 103546.	2.0	10
132	Excited state absorption in conjugated polymers: Photoinduced transparency. Polymer, 2007, 48, 5303-5307.	1.8	9
133	Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures. Applied Physics A: Materials Science and Processing, 2011, 102, 435-439.	1.1	9
134	Printed microfluidic filter for heparinized blood. Biomicrofluidics, 2017, 11, 034101.	1.2	9
135	Interaction of peptides obtained from the enzymatic hydrolysis of soybean meal with cyclodextrins: an evaluation of bitterness reduction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89, 59-69.	0.9	9
136	Design of a bioelectronic tongue for glucose monitoring using zinc oxide nanofibers and graphene derivatives. Sensors and Actuators Reports, 2021, 3, 100050.	2.3	9
137	Induced transparency in polythiophene bearing azobenzene moieties. Polymer, 2006, 47, 7436-7440.	1.8	8
138	Micropatterning MoS2/Polyamide Electrospun Nanofibrous Membranes Using Femtosecond Laser Pulses. Photonics, 2019, 6, 3.	0.9	8
139	Development of Cantilever Nanoimmunosensors Applied to the Detection of β-Estradiol and Estrone in Water. IEEE Sensors Journal, 2020, 20, 12620-12627.	2.4	8
140	Electrospun nanofibers versus drop casting films for designing an electronic tongue: comparison of performance for monitoring geosmin and 2â€methylisoborneol in water samples. Polymers for Advanced Technologies, 2020, 31, 2075-2082.	1.6	8
141	Effects of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) aggregation on its spectral and kinetic characteristics and singlet oxygen production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120063.	2.0	8
142	Polyacrylonitrile/Reduced Graphene Oxide Free-Standing Nanofibrous Membranes for Detecting Endocrine Disruptors. ACS Applied Nano Materials, 2022, 5, 6376-6384.	2.4	8
143	INFLUENCE OF PHOTODEGRADATION ON THE OPTICAL LIMITING PROCESS OF CHLOROPHYLL A. Modern Physics Letters B, 2003, 17, 83-87.	1.0	7
144	Synthesis of a nanocomposite containing a water-soluble polythiophene derivative and gold nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1245-1254.	2.4	7

#	Article	IF	CITATIONS
145	Polyvinylpyrrolidone electrospun nanofibers doped with Eu ³⁺ : Fabrication, characterization, and application in gas sensors. Journal of Applied Polymer Science, 2019, 136, 47775.	1.3	7
146	Single-Walled Carbon Nanotubes Functionalized with Carboxylic Acid for Fabricating Polymeric Composite Microstructures. Journal of Nanoscience and Nanotechnology, 2015, 15, 9797-9801.	0.9	6
147	Laser patterning and induced reduction of graphene oxide functionalized silk fibroin. Optical Materials, 2020, 99, 109540.	1.7	6
148	CELLULOSE NANOFIBRILS MODIFICATION WITH POLYANILINE AIMING AT ENHANCING ELECTRICAL PROPERTIES FOR APPLICATION IN FLEXIBLE ELECTRONICS. Cellulose Chemistry and Technology, 2019, 53, 775-786.	0.5	6
149	GREEN-SYNTHESIZED GOLD NANOPARTICLES SUPPORTED ON CELLULOSE NANOWHISKERS FOR EASY-TO-INTERPRET COLORIMETRIC DETECTION OF CADMIUM (II). Cellulose Chemistry and Technology, 2020, 54, 407-413.	0.5	6
150	Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polymers for Advanced Technologies, 2022, 33, 591-600.	1.6	6
151	Nanoparticles and Antimicrobial Food Packaging. , 2018, , .		5
152	Electrospun composite nanofibers as sensors for food analysis. , 2021, , 261-286.		5
153	Nanocomposite-Based Chemiresistive Electronic Nose and Application in Coffee Analysis. ACS Food Science & Technology, 2021, 1, 1464-1471.	1.3	5
154	Homemade Silver/Silver chloride ink with low curing temperature for screen-printed electrodes. Journal of Electroanalytical Chemistry, 2022, 915, 116316.	1.9	5
155	Chitosan/Gold Nanoparticles Nanocomposite Film for Bisphenol A Electrochemical Sensing. Electrochem, 2022, 3, 239-247.	1.7	5
156	INFLUENCE OF 1-METHYLCYCLOPROPENE ON THE BIOCHEMICAL RESPONSE AND RIPENING OF â€~SOLO' PAPAYAS. Revista Brasileira De Fruticultura, 2016, 38, .	0.2	4
157	Electrochemical Immunosensor Made with Zeinâ€based Nanofibers for Onâ€site Detection of Aflatoxin B1. Electroanalysis, 2023, 35, .	1.5	4
158	Biodegradable Polymer Nanofibers Applied in Slow Release Systems for Agri-Food Applications. , 2019, , 291-316.		3
159	The effect of alkyl chain of the imidazolium ring on the poly(o-methoxyaniline)/ionic liquid supercapacitor performance. Journal of Solid State Electrochemistry, 2019, 23, 1109-1119.	1.2	3
160	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2019, , 441-468.		3
161	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170342.	11.1	3
162	Electrical Impedance-Based Electronic Tongues. , 2023, , 567-590.		3

Electrical Impedance-Based Electronic Tongues. , 2023, , 567-590. 162

#	Article	IF	CITATIONS
163	A Principal Curves-Based Method for Electronic Tongue Data Analysis. IEEE Sensors Journal, 2021, 21, 4957-4965.	2.4	2
164	Sensing Materials: Nanofibers Produced by Electrospinning and Solution Blow Spinning. , 2023, , 521-541.		2
165	Antibacterial Properties of Oregano Essential Oil Encapsulated in Poly(Îμ-Caprolactone) Nanoparticles. Advanced Science, Engineering and Medicine, 2020, 12, 864-869.	0.3	2
166	Estimates of AgNP toxicity thresholds in support of environmental safety policies. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	2
167	TiO ₂ Hollow Nanofiber/Polyaniline Nanocomposites for Ammonia Detection at Room Temperature. ChemNanoMat, 2022, 8, .	1.5	2
168	Excited State Absorption of Doped and Undoped Polyanyline. Molecular Crystals and Liquid Crystals, 2010, 523, 304/[876]-309/[881].	0.4	1
169	Toxicity of Engineered Nanostructures in Aquatic Environments. Environmental Chemistry for A Sustainable World, 2021, , 171-202.	0.3	1
170	Postharvest quality of papaya fruit wrapped with polyvinyl chloride film added with silver. Acta Horticulturae, 2021, , 265-272.	0.1	1
171	Multifunctional Wound Dressings Based on Electrospun Nanofibers. , 2022, , 297-329.		1
172	Two-photon absorption spectrum in perylene derivatives. , 0, , .		0
173	Excited state absorption cross-section spectrum of Chlorophyll A. , 2007, , .		0
174	Sistema de baixo custo para determinação da permeabilidade de CO2 em filmes plásticos. Brazilian Journal of Food Technology, 2018, 21, .	0.8	0
175	NANOFIBRAS ELETROFIADAS E SUAS APLICAÇÕES: AVANÇOS NA ÚLTIMA DÉCADA. Quimica Nova, 0, , .	0.3	0
176	PROCESSAMENTO E APLICAÇÃO DE BIOMATERIAIS POLIMÉRICOS: AVANÇOS RECENTES E PERSPECTIVAS. Quimica Nova, 0, , .	0.3	0
177	Fabrication of microstructures containing the conjugated polymer MEH-PPV. , 2008, , .		0
178	Fabrication of optical active polymeric microstructures connected with silica nanofibers. , 2010, , .		0
179	10.1063/1.4982963.1., 2017,,.		0

180 Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2018, , 1-29.

0

#	Article	IF	CITATIONS
181	Polycaprolactone And Polycaprolactone Triol Blends To Obtain A Stable Liquid Nanotechnological Formulation: Synthesis, Characterization And In Vitro - In Vivo Taste Masking Evaluation. Drug Development and Industrial Pharmacy, 2021, , 1-18.	0.9	0