

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	7.1	274
2	Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials, 2015, 52, 126-139.	5.7	261
3	Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 2020, 321, 589-601.	4.8	135
4	Terminal modification of polymeric micelles with π-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015, 71, 1-10.	5.7	125
5	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188.	6.6	112
6	Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. Journal of Materials Chemistry B, 2020, 8, 6765-6781.	2.9	112
7	Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159.	5.7	99
8	A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Science Advances, 2020, 6, .	4.7	95
9	Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polymer Chemistry, 2014, 5, 1285-1297.	1.9	94
10	Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioactive Materials, 2022, 8, 220-240.	8.6	84
11	A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Science Advances, 2021, 7, .	4.7	81
12	Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials, 2020, 255, 120193.	5.7	78
13	A novel self-healing polydopamine-functionalized chitosan-arginine hydrogel with enhanced angiogenic and antibacterial activities for accelerating skin wound healing. Chemical Engineering Journal, 2021, 420, 130302.	6.6	75
14	Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. Journal of Materials Chemistry A, 2014, 2, 3190-3199.	5.2	70
15	A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials, 2019, 216, 119253.	5.7	65
16	Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments. Biomaterials, 2014, 35, 4517-4524.	5.7	61
17	A facile strategy to generate polymeric nanoparticles for synergistic chemo-photodynamic therapy. Chemical Communications, 2015, 51, 4271-4274.	2.2	61
18	Polymeric micelles with citraconic amide as pH-sensitive bond in backbone for anticancer drug delivery. International Journal of Pharmaceutics, 2014, 471, 28-36.	2.6	57

#	Article	IF	CITATIONS
19	A ROS-responsive polymeric micelle with a π-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Organic and Biomolecular Chemistry, 2017, 15, 9176-9185.	1.5	57
20	Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles. Biomacromolecules, 2018, 19, 4658-4667.	2.6	53
21	Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication. Journal of Materials Chemistry A, 2013, 1, 3163.	5.2	49
22	Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta, 2019, 1080, 75-83.	2.6	41
23	Fluorocarbon-driven photosensitizer assembly decodes energy conversion pathway for suppressing breast tumor. Nano Today, 2021, 41, 101305.	6.2	41
24	Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy. Journal of Materials Chemistry B, 2018, 6, 4687-4696.	2.9	37
25	Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. Journal of Materials Science, 2012, 47, 5097-5105.	1.7	36
26	Effect of architecture on the micellar properties of poly (É>-caprolactone) containing sulfobetaines. Colloids and Surfaces B: Biointerfaces, 2013, 112, 35-41.	2.5	36
27	Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery. Bioconjugate Chemistry, 2017, 28, 1944-1954.	1.8	36
28	Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids and Surfaces B: Biointerfaces, 2015, 126, 1-9.	2.5	35
29	Structure Inversionâ€Bridged Sequential Amino Acid Metabolism Disturbance Potentiates Photodynamicâ€Evoked Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	35
30	Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. Journal of Biomedical Materials Research - Part A, 2011, 97A, 472-479.	2.1	34
31	Novel pH-Sensitive Micelles Generated by Star-Shape Copolymers Containing Zwitterionic Sulfobetaine for Efficient Cellular Internalization. Journal of Biomedical Nanotechnology, 2013, 9, 1847-1861.	0.5	33
32	pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomaterials Science, 2019, 7, 3190-3203.	2.6	32
33	In vitro and in vivo anti-tumor efficiency comparison of phosphorylcholine micelles with PEG micelles. Colloids and Surfaces B: Biointerfaces, 2017, 157, 268-279.	2.5	30
34	Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy. Chemical Engineering Journal, 2021, 411, 128561.	6.6	29
35	Characteristic of core materials in polymeric micelles effect on their micellar properties studied by experimental and dpd simulation methods. International Journal of Pharmaceutics, 2015, 492, 152-160.	2.6	28
36	Polyurethanes containing zwitterionic sulfobetaines and their molecular chain rearrangement in water. Journal of Biomedical Materials Research - Part A, 2013, 101A, 909-918.	2.1	21

#	Article	IF	CITATIONS
37	Chain length effect on drug delivery of chrysin modified mPEG–PCL micelles. RSC Advances, 2015, 5, 59014-59021.	1.7	21
38	<i>In situ</i> chemically crosslinked chitosan membrane by adipic acid. Journal of Applied Polymer Science, 2013, 128, 3308-3314.	1.3	20
39	Biodegradable poly(ethylene glycol)–poly(ε-carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery. RSC Advances, 2016, 6, 58160-58172.	1.7	19
40	Multifunctional nanoparticles self-assembled from polyethylenimine-based graft polymers as efficient anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 155, 118-127.	2.5	19
41	Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand―drug release system. Journal of Materials Chemistry B, 2018, 6, 2258-2273.	2.9	19
42	Arginine modified polymeric micelles as a novel drug delivery system with enhanced endocytosis efficiency. Colloids and Surfaces B: Biointerfaces, 2016, 148, 181-192.	2.5	18
43	Bioinspired mimics: Self-assembly of redox-activated phosphorylcholine–based biodegradable copolymers for enhancing antitumor efficiency. Materials Science and Engineering C, 2018, 89, 401-412.	3.8	18
44	Correlation of polymeric micelle sizes and their cellular internalization in vitro and tumor targeting in vivo. RSC Advances, 2014, 4, 62708-62716.	1.7	17
45	Phosphorylcholine micelles decorated by hyaluronic acid for enhancing antitumor efficiency. Polymer Chemistry, 2017, 8, 2472-2483.	1.9	17
46	Redox/ATP switchable theranostic nanoparticles for real-time fluorescence monitoring of doxorubicin delivery. Journal of Materials Chemistry B, 2018, 6, 2089-2103.	2.9	17
47	Copolymer nanoparticles composed of sulfobetaine and poly(εâ€caprolactone) as novel anticancer drug carriers. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2079-2087.	2.1	16
48	Study on Amino-functionalized Graphene Oxide/Poly(methyl methacrylate) Nanocomposites. Chemistry Letters, 2012, 41, 683-685.	0.7	15
49	Enzyme-triggered deshielding of nanoparticles and positive-charge mediated lysosomal escape for chemo/photo-combination therapy. Journal of Materials Chemistry B, 2019, 7, 4758-4762.	2.9	15
50	Highly stable RGD/disulfide bridge-bearing star-shaped biodegradable nanocarriers for enhancing drug-loading efficiency, rapid cellular uptake, and on-demand cargo release. International Journal of Nanomedicine, 2018, Volume 13, 8247-8268.	3.3	14
51	Efficacy of Extracorporeal Shock Wave Therapy for Achilles Tendinopathy: A Meta-analysis. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596712090343.	0.8	14
52	Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway. Journal of Pharmacy and Pharmacology, 2021, 73, 916-921.	1.2	14
53	Crystallization, rheological behavior and mechanical properties of poly(vinylidene fluoride) composites containing graphitic fillers: a comparative study. Polymer International, 2012, 61, 1031-1040.	1.6	13
54	Functionalization of biodegradable hyperbranched poly(α,β-malic acid) as a nanocarrier platform for anticancer drug delivery. RSC Advances, 2015, 5, 13157-13165.	1.7	13

#	Article	IF	CITATIONS
55	The effect of α-cyclodextrin on poly(pseudo)rotaxane nanoparticles self-assembled by protoporphyrin modified poly(ethylene glycol) for anticancer drug delivery. Carbohydrate Polymers, 2017, 174, 789-797.	5.1	13
56	Effects of copolymer component on the properties of phosphorylcholine micelles. International Journal of Nanomedicine, 2017, Volume 12, 487-500.	3.3	13
57	Spatiotemporal manipulation of L-arginine release from bioactive hydrogels initiates rapid skin wound healing accompanied with repressed scar formation. Applied Materials Today, 2021, 24, 101116.	2.3	13
58	Preparation and characterization of chitosan composite membranes crosslinked by carboxyl-capped poly(ethylene glycol). Chinese Journal of Polymer Science (English Edition), 2014, 32, 236-244.	2.0	12
59	Nano-hydroxyapatite-evoked immune response synchronized with controllable immune adjuvant release for strengthening melanoma-specific growth inhibition. Acta Biomaterialia, 2022, 145, 159-171.	4.1	12
60	Photo-induced specific intracellular release EGFR inhibitor from enzyme/ROS-dual sensitive nano-platforms for molecular targeted-photodynamic combinational therapy of non-small cell lung cancer. Journal of Materials Chemistry B, 2020, 8, 7931-7940.	2.9	11
61	Exogenous vitamin C triggered structural changes of redox-activated dual core-crosslinked biodegradable nanogels for boosting the antitumor efficiency. Journal of Materials Chemistry B, 2020, 8, 5109-5116.	2.9	11
62	Gold nanorods/tetrahedral DNA composites for chemo-photothermal therapy. International Journal of Energy Production and Management, 2022, 9, .	1.9	10
63	Fabrication of a polypseudorotaxane nanoparticle with synergistic photodynamic and chemotherapy. Chinese Chemical Letters, 2017, 28, 1885-1888.	4.8	9
64	Reduction-Induced Decomposition and Self-Aggregation Strategy To Induce Reactive Oxygen Species Generation for Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 954-960.	2.3	8
65	High-drug-loading capacity of redox-activated biodegradable nanoplatform for active targeted delivery of chemotherapeutic drugs. International Journal of Energy Production and Management, 2020, 7, 359-369.	1.9	8
66	Mitochondria-acting carrier-free nanoplatform self-assembled by α-tocopheryl succinate carrying cisplatin for combinational tumor therapy. International Journal of Energy Production and Management, 2021, 8, rbab029.	1.9	8
67	Multi-Activated Polymeric Micelles with Charge-Conversion and ROS-Controlled Drug Release for Efficient Cancer Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 946-959.	0.5	7
68	Synthesis, characterization, and crystallization of biodegradable poly(Îμ-caprolactone)-poly(L-lactide) diblock copolymers. E-Polymers, 2015, 15, 15-23.	1.3	6
69	Framework effect of amphiphilic polyesters on their molecular movement and protein adsorption-resistance properties. Colloids and Surfaces B: Biointerfaces, 2015, 125, 213-221.	2.5	6
70	Dynamic intracellular tracking nanoparticles via pH-evoked "off–on―fluorescence. Journal of Materials Chemistry B, 2017, 5, 3107-3110.	2.9	5
71	Super-fast <i>in situ</i> formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes. Journal of Materials Chemistry B, 2021, 9, 9162-9173.	2.9	5
72	Synthesis and Cytocompatibility of Biodegradable Poly (L-Lactide-r-5-Hydroxyl Trimethylene Carbonate) Copolymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 218-225.	1.2	4

#	Article	IF	CITATIONS
73	Building Micelle Analog Nanoparticle for Multidrug Delivery: Dualâ€Polymer Nanoparticles with Hydrophilic Shell and Double Hydrophobic Layers. Macromolecular Materials and Engineering, 2018, 303, 1800330.	1.7	4
74	Intracellular pH-induced fluorescence used to track nanoparticles in cells. Journal of Materials Chemistry B, 2015, 3, 5411-5414.	2.9	2
75	The preparation of phosphorylcholine-containing poly(Llactide) nanoparticles with solvent evaporation method. E-Polymers, 2010, 10, .	1.3	0