

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072221/publications.pdf Version: 2024-02-01

Huili

#	Article	IF	CITATIONS
1	Preparation of Co 3 O 4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosensors and Bioelectronics, 2017, 89, 846-852.	5.3	117
2	56â€fJ dissipated energy per bit of oxide-confined 850â€nm VCSELs operating at 25â€Gbit/s. Electronics Letters, 2012, 48, 1292.	0.5	76
3	Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone. Sensors and Actuators B: Chemical, 2018, 255, 1927-1936.	4.0	59
4	Errorâ€free 46ÂGbit/s operation of oxideâ€confined 980Ânm VCSELs at 85°C. Electronics Letters, 2014, 50, 1369-1371.	0.5	57
5	Energy efficient 40ÂGbit/s transmission with 850Ânm VCSELs at 108 fJ/bit dissipated heat. Electronics Letters, 2013, 49, 666-667.	0.5	55
6	Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50, 613-621.	1.0	36
7	Fabrication of the Ni-based composite wires for electrochemical detection of copper(â¡) ions. Analytica Chimica Acta, 2021, 1143, 45-52.	2.6	28
8	Energyâ€efficient and temperatureâ€stable oxideâ€confined 980Ânm VCSELs operating errorâ€free at 38ÂGbit/s 85°C. Electronics Letters, 2014, 50, 103-105.	at 0.5	25
9	Employing the interfacial barrier of P-rGO/ZnO microspheres for improving the electrochemical sensing performance to dopamine. Sensors and Actuators B: Chemical, 2020, 309, 127757.	4.0	24
10	85-fJ Dissipated Energy Per Bit at 30 Gb/s Across 500-m Multimode Fiber Using 850-nm VCSELs. IEEE Photonics Technology Letters, 2013, 25, 1638-1641.	1.3	22
11	Temperature-Stable 980-nm VCSELs for 35-Gb/s Operation at 85 °C With 139-fJ/bit Dissipated Heat. IEEE Photonics Technology Letters, 2014, 26, 2349-2352.	1.3	20
12	Temperature-Stable, Energy-Efficient, and High-Bit Rate Oxide-Confined 980-nm VCSELs for Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 405-413.	1.9	19
13	Preparation of NiMn2O4/C necklace-like microspheres as oxidase mimetic for colorimetric determination of ascorbic acid. Talanta, 2020, 219, 121299.	2.9	19
14	New application of p-n junction in electrochemical detection: The detection of heavy metal ions. Journal of Electroanalytical Chemistry, 2019, 855, 113624.	1.9	18
15	Fabrication of the Ni/ZnO/BiOI foam for the improved electrochemical biosensing performance to glucose. Analytica Chimica Acta, 2020, 1095, 93-98.	2.6	17
16	Spectral Efficiency and Energy Efficiency of Pulse-Amplitude Modulation Using 1.3 μm Wafer-Fusion VCSELs for Optical Interconnects. ACS Photonics, 2017, 4, 2018-2024.	3.2	16
17	Temperature-Dependent Impedance Characteristics of Temperature-Stable High-Speed 980-nm VCSELs. IEEE Photonics Technology Letters, 2015, 27, 832-835.	1.3	15
18	Energy-efficient oxide-confined high-speed VCSELs for optical interconnects. Proceedings of SPIE, 2014, , .	0.8	14

Hui Li

#	Article	IF	CITATIONS
19	Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset. Applied Physics Letters, 2017, 111, .	1.5	14
20	Tuning Interfacial Energy Barriers in Heterojunctions for Antiâ€Interference Sensing. Advanced Functional Materials, 2021, 31, 2008604.	7.8	14
21	Introducing Schottky interface as a novel strategy for ultrasensitive nonenzymatic glucose detection. Journal of Electroanalytical Chemistry, 2017, 801, 251-257.	1.9	10
22	Introducing Schottky barrier into electrochemical response: A novel adjusting strategy for designing electrochemical sensors. Electrochimica Acta, 2017, 249, 173-178.	2.6	10
23	Fabrication of CQDs/MoS2/Mo foil for the improved electrochemical detection. Analytica Chimica Acta, 2019, 1079, 79-85.	2.6	10
24	Coherent generation and manipulation of stationary light pulses encoded in degrees of freedom of polarization and orbital angular momentum. Physical Review A, 2019, 100, .	1.0	9
25	Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory. Optics Express, 2019, 27, 27477.	1.7	9
26	Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs. Proceedings of SPIE, 2013, , .	0.8	7
27	Using the interfacial barrier effects of p–n junction on electrochemistry for detection of phosphate. Analyst, The, 2020, 145, 3217-3221.	1.7	6
28	Reversible storage and manipulation of light pulses with orbital angular momentum. Quantum Information Processing, 2020, 19, 1.	1.0	5
29	Energy-efficient and temperature-stable high-speed VCSELs for optical interconnects. , 2013, , .		4
30	Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects. , 2014, , .		4
31	New insights into the electrochemical detection application of p–p junction foam: the effects of the interfacial potential barrier. Analyst, The, 2016, 141, 6515-6520.	1.7	4
32	A self-adjusting mechanism of schottky junction constructed by zero-bandgap graphene for highly efficient electrochemical biosensing. Electrochimica Acta, 2017, 247, 306-313.	2.6	4
33	Comparative study on stained InGaAs quantum wells for high-speed optical-interconnect VCSELs. Optics Communications, 2018, 415, 1-5.	1.0	4
34	Fabrication of 3D Ni/NiO/MoS ₂ /rGO foam for enhancing sensing performance. New Journal of Chemistry, 2021, 45, 4387-4392.	1.4	4
35	Efficient all-optical router and beam splitter for light with orbital angular momentum. Optics Express, 2020, 28, 19750.	1.7	4
36	Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom, 0, , .	0.1	4

Hui Li

#	Article	IF	CITATIONS
37	40ÂGbit/s data transmission with 980Ânm VCSELs at 120°C using fourâ€level pulseâ€amplitude modulation. Electronics Letters, 2015, 51, 1517-1519.	0.5	3
38	Relative intensity noise of temperature-stable, energy-efficient 980 nm VCSELs. AIP Advances, 2017, 7, 025107.	0.6	3
39	Fabrication of p-n junction foam for detection of methyl parathion in seawater. Sensors and Actuators B: Chemical, 2019, 285, 413-417.	4.0	3
40	Green nanophotonics for future datacom and Ethernet networks. , 2014, , .		2
41	Energy-efficient, temperature stable, high data rate VCSELs for optical interconnects. , 2014, , .		2
42	Temperature-Stable Energy-Efficient High-Bit-Rate Oxide-Confined 980 nm VCSELs for Optical Interconnects. , 2014, , .		2
43	VCSELs for exascale computing, computer farms, and green photonics. , 2012, , .		1
44	Energy efficient 850 nm vcsels for error-free 30 gb/s operation across 500 m of multimode optical fiber with 85 fj of dissipated energy per bit. , 2013, , .		1
45	Green photonics for data and computer communication. , 2013, , .		1
46	Corrections to "Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs―[Aug 14 613-621]. IEEE Journal of Quantum Electronics, 2014, 50, 782-782.	1.0	1
47	Extraction and analysis of high-frequency response and impedance of 980-nm VCSELs as a function of temperature and oxide aperture diameter. , 2015, , .		1
48	Efficient polarization beam splitter based on the optimized stationary light pulse. Quantum Information Processing, 2021, 20, 1.	1.0	1
49	119 fJ of Dissipated Energy per Bit for Error-free 40 Gbit/s Transmission Across 50 m of Multimode Optical Fiber Using Energy Efficient 850 nm VCSELs. , 2013, , .		1
50	Thermal Analysis and Structure Optimization of High-speed Optical Communication-VCSEL. Chinese Journal of Luminescence, 2017, 38, 1516-1522.	0.2	1
51	Green nanophotonics for future datacom and Ethernet networks. , 2013, , .		0
52	Temperature-Stable Oxide-Confined 980 Nm VCSELs Operating Error-Free at 46 Gb/s and 85°C. , 2014, , .		0
53	VCSELs for computer interconnects. , 2014, , .		0
54	Efficient generation of stationary light pulses due to coupling between two lower levels. European Physical Journal Plus, 2021, 136, 1.	1.2	0

Hui Li

#	Article	IF	CITATIONS
55	Oxide-Aperture-Diameter-Dependent RIN Analysis of Vertical-Cavity Surface-Emitting Lasers. , 2017, , .		0
56	Oxide-Aperture Dependent-RIN Research of High-speed, Energy-Efficient 980 nm VCSELs. Guangzi Xuebao/Acta Photonica Sinica, 2017, 46, 1125003.	0.1	0
57	Investigation of thermal performance of small oxide-aperture vertical-cavity surface-emitting lasers. , 2019, , .		0