Gabriella Garbarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Study of the Pyrolysis Products of Kraft Lignin. Energies, 2022, 15, 991.	1.6	3
2	CO2 hydrogenation and ethanol steam reforming over Co/SiO2 catalysts: Deactivation and selectivity switches. Catalysis Today, 2021, 365, 122-131.	2.2	9
3	Ni/SiO2-Al2O3 catalysts for CO2 methanation: Effect of La2O3 addition. Applied Catalysis B: Environmental, 2021, 284, 119697.	10.8	59
4	Lanthanumâ€based catalysts for (bio)ethanol conversion: effect of preparation method on catalytic performance – hard templating <i>versus</i> hydrolysis. Journal of Chemical Technology and Biotechnology, 2021, 96, 1116-1124.	1.6	5
5	Improvement of Ni/Al ₂ O ₃ Catalysts for Low-Temperature CO ₂ Methanation by Vanadium and Calcium Oxide Addition. Industrial & Engineering Chemistry Research, 2021, 60, 6554-6564.	1.8	20
6	A study of molybdena catalysts in ethanol oxidation. Part <scp>2</scp> . Aluminaâ€supported and silicaâ€doped aluminaâ€supported <scp>MoO₃</scp> . Journal of Chemical Technology and Biotechnology, 2021, 96, 3304-3315.	1.6	2
7	Modification of the properties of Î ³ -alumina as a support for nickel and molybdate catalysts by addition of silica. Catalysis Today, 2021, 378, 57-64.	2.2	11
8	A study of ethanol dehydrogenation to acetaldehyde over copper/zinc aluminate catalysts. Catalysis Today, 2020, 354, 167-175.	2.2	42
9	Support effects in metal catalysis: a study of the behavior of unsupported and silica-supported cobalt catalysts in the hydrogenation of CO2 at atmospheric pressure. Catalysis Today, 2020, 345, 213-219.	2.2	27
10	Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management, 2020, 103, 146-158.	3.7	39
11	Heterogeneous Catalysis in (Bio)Ethanol Conversion to Chemicals and Fuels: Thermodynamics, Catalysis, Reaction Paths, Mechanisms and Product Selectivities. Energies, 2020, 13, 3587.	1.6	20
12	A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts. Energies, 2020, 13, 2792.	1.6	24
13	Modeling of Laboratory Steam Methane Reforming and CO2 Methanation Reactors. Energies, 2020, 13, 2624.	1.6	14
14	Synthesis of high value-added Na–P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps. Materials Chemistry and Physics, 2020, 248, 122903.	2.0	25
15	A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: Catalytic activity, deactivation and regeneration. Applied Catalysis A: General, 2020, 602, 117710.	2.2	28
16	Ni-Mn catalysts on silica-modified alumina for CO2 methanation. Journal of Catalysis, 2020, 382, 358-371.	3.1	70
17	Graphitic Carbon Nitride–Nickel Catalyst: From Material Characterization to Efficient Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7244-7255.	3.2	38
18	Unsupported cobalt nanoparticles as catalysts: Effect of preparation method on catalytic activity in CO2 methanation and ethanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 27319-27328.	3.8	25

#	Article	IF	CITATIONS
19	On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming. Catalysis Letters, 2019, 149, 929-941.	1.4	17
20	A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation. Applied Catalysis B: Environmental, 2019, 248, 286-297.	10.8	142
21	Cobalt nanoparticles mechanically deposited on αâ€Al ₂ O ₃ : a competitive catalyst for the production of hydrogen through ethanol steam reforming. Journal of Chemical Technology and Biotechnology, 2019, 94, 538-546.	1.6	20
22	A study of ethanol conversion over zinc aluminate catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 503-522.	0.8	12
23	Characterization of a mesoporous γ-Al2O3 catalyst: Influence of their properties on ethanol conversion. Materials Today: Proceedings, 2018, 5, 17515-17524.	0.9	4
24	Ethanol and diethyl ether catalytic conversion over commercial alumina and lanthanum-doped alumina: Reaction paths, catalyst structure and coking. Applied Catalysis B: Environmental, 2018, 236, 490-500.	10.8	42
25	Catalytic abatement of biomass tar: a technological perspective of Ni-based catalysts. Rendiconti Lincei, 2017, 28, 69-85.	1.0	11
26	Adsorption and separation of CO 2 from N 2 -rich gas on zeolites: Na-X faujasite vs Na-mordenite. Journal of CO2 Utilization, 2017, 19, 266-275.	3.3	28
27	On the use of infrared spectrometer as detector for Temperature Programmed (TP) techniques in catalysts characterization. Journal of Industrial and Engineering Chemistry, 2017, 47, 288-296.	2.9	9
28	γ-Alumina and Amorphous Silica–Alumina: Structural Features, Acid Sites and the Role of Adsorbed Water. Topics in Catalysis, 2017, 60, 1554-1564.	1.3	35
29	Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion. Applied Catalysis B: Environmental, 2017, 200, 458-468.	10.8	45
30	Preparation and characterization of mesoporous nanocrystalline La-, Ce-, Zr-, Sr-containing Ni Al2O3 methane autothermal reforming catalysts. International Journal of Hydrogen Energy, 2016, 41, 8855-8862.	3.8	52
31	Steam reforming of biomass-derived organics: Interactions of different mixture components on Ni/Al 2 O 3 based catalysts. Applied Catalysis B: Environmental, 2016, 187, 386-398.	10.8	47
32	Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Processing Technology, 2016, 153, 121-128.	3.7	24
33	On the detectability limits of nickel species on NiO/γ-Al 2 O 3 catalytic materials. Applied Catalysis A: General, 2016, 525, 180-189.	2.2	35
34	Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study. Catalysis Today, 2016, 277, 21-28.	2.2	94
35	Facile synthesis of a mesoporous alumina and its application as a support of Ni-based autothermal reforming catalysts. International Journal of Hydrogen Energy, 2016, 41, 3456-3464.	3.8	68
36	Low-Temperature Dehydrogenation of Ethanol on Atomically Dispersed Gold Supported on ZnZrO _{<i>x</i>>. ACS Catalysis, 2016, 6, 210-218.}	5.5	89

GABRIELLA GARBARINO

#	Article	IF	CITATIONS
37	Hydrogen from steam reforming of ethanol over cobalt nanoparticles: Effect of boron impurities. Applied Catalysis A: General, 2016, 518, 67-77.	2.2	21
38	A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reforming of ethanol and phenol. Applied Catalysis B: Environmental, 2015, 174-175, 21-34.	10.8	104
39	Preparation of supported catalysts: A study of the effect of small amounts of silica on Ni/Al2O3 catalysts. Applied Catalysis A: General, 2015, 505, 86-97.	2.2	34
40	NbP catalyst for furfural production: FT IR studies of surface properties. Applied Catalysis A: General, 2015, 502, 388-398.	2.2	32
41	Pure vs ultra-pure Î ³ -alumina: A spectroscopic study and catalysis of ethanol conversion. Catalysis Communications, 2015, 70, 77-81.	1.6	22
42	Methanation of carbon dioxide on Ru/Al 2 O 3 andÂNi/Al 2 O 3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. International Journal of Hydrogen Energy, 2015, 40, 9171-9182.	3.8	179
43	Ceria–zirconia based catalysts for ethanol steam reforming. Fuel, 2015, 153, 166-175.	3.4	66
44	Tuning of product selectivity in the conversion of ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Processing Technology, 2015, 137, 290-297.	3.7	47
45	Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of magnesium and boron on catalytic activity in the presence and absence of sulphur. Applied Catalysis B: Environmental, 2014, 147, 813-826.	10.8	46
46	Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation. Journal of Molecular Catalysis A, 2014, 383-384, 10-16.	4.8	52
47	The state of nickel in spent Fluid Catalytic Cracking catalysts. Applied Catalysis A: General, 2014, 486, 176-186.	2.2	53
48	A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. International Journal of Hydrogen Energy, 2014, 39, 11557-11565.	3.8	225
49	On the consistency of results arising from different techniques concerning the nature of supported metal oxide (nano)particles. The case of NiO/Al2O3. Catalysis Communications, 2014, 51, 37-41.	1.6	28
50	Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables. Applied Catalysis A: General, 2013, 452, 163-173.	2.2	57
51	Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of Ni loading and sulphur deactivation. Applied Catalysis B: Environmental, 2013, 129, 460-472.	10.8	52
52	A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene. Catalysis Communications, 2013, 38, 67-73.	1.6	14
53	Cobalt-based nanoparticles as catalysts for low temperature hydrogen production by ethanol steam reforming. International Journal of Hydrogen Energy, 2013, 38, 82-91.	3.8	64
54	Steam reforming of phenol–ethanol mixture over 5% Ni/Al2O3. Applied Catalysis B: Environmental, 2012, 113-114, 281-289.	10.8	32

#	Article	IF	CITATIONS
55	A study of molybdena catalysts in ethanol oxidation. Part 1. Unsupported and silicaâ€supported MoO 3. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	2