Liang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inâ€Plane Assembled Orthorhombic Nb ₂ O ₅ Nanorod Films with Highâ€Rate Li ⁺ Intercalation for Highâ€Performance Flexible Liâ€Ion Capacitors. Advanced Functional Materials, 2018, 28, 1704330.	14.9	207
2	Probing the Degradation Mechanism of Li ₂ MnO ₃ Cathode for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 975-982.	6.7	130
3	Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials. Journal of Power Sources, 2013, 225, 286-292.	7.8	103
4	Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 627, 455-462.	5.5	55
5	High-Capacity and Self-Stabilized Manganese Carbonate Microspheres as Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 25369-25378.	8.0	45
6	Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodiumâ€lon Capacitors. Small Methods, 2019, 3, 1800371.	8.6	41
7	Enhanced performance of Li LiFePO4 cells using CsPF6 as an electrolyte additive. Journal of Power Sources, 2015, 293, 1062-1067.	7.8	29
8	Enhancing the performance of nanostructured ZnO as an anode material for lithium-ion batteries by polydopamine-derived carbon coating and confined crystallization. Journal of Alloys and Compounds, 2018, 764, 545-554.	5.5	27
9	Enhanced performance of solid-state Li–O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Metals, 2018, 37, 527-535.	7.1	26
10	Post-annealing tailored 3D cross-linked TiNb2O7 nanorod electrode: towards superior lithium storage for flexible lithium-ion capacitors. Science China Materials, 2020, 63, 492-504.	6.3	22
11	Combinational Design of Electronic Structure and Nanoarray Architecture Achieves a Lowâ€Overpotential Oxygen Electrode for Aprotic Lithium–Oxygen Batteries. Small Methods, 2020, 4, 1900619.	8.6	15
12	Surface-assembled highly flexible Na3(VOPO4)2F nanocube cathode for high-rate binder-free Na-ion batteries. Chinese Chemical Letters, 2021, 32, 826-829.	9.0	15
13	Hybrid architecture design enhances the areal capacity and cycling life of low-overpotential nanoarray oxygen electrode for lithium–oxygen batteries. Journal of Energy Chemistry, 2020, 46, 248-255.	12.9	11
14	Ball-flower-like carbon microspheres via a three-dimensional replication strategy as a high-capacity cathode in lithium–oxygen batteries. Science China Materials, 2019, 62, 633-644.	6.3	10
15	Fabrication of nitrogen doped carbon encapsulated ZnO particle and its application in a lithium ion conversion supercapacitor. Journal of Materials Research, 2017, 32, 334-342.	2.6	9
16	Surface carboxyl groups enhance the capacities of carbonaceous oxygen electrodes for aprotic lithiumâ^'oxygen batteries: A direct observation on binder-free electrodes. Chinese Chemical Letters, 2019, 30, 2328-2332.	9.0	9
17	Synergistic tuning of electrochemical surface area and surface Co3+ by oxygen plasma enhances the capacities of Co3O4 lithium–oxygen battery cathodes. Chinese Chemical Letters, 2021, 32, 3491-3495.	9.0	8
18	A novel bifunctional oxygen electrode architecture enabled by heterostructures self-scaffolding for lithium–oxygen batteries. Journal of Energy Chemistry, 2020, 51, 216-221.	12.9	6

LIANG XIAO

#	ARTICLE	IF	CITATIONS
19	The effects of structural properties on the lithium storage behavior of mesoporous TiO ₂ . Nanotechnology, 2017, 28, 265401.	2.6	5
20	Direct Observation of Solvent Donor Number Effect on Lithium–Oxygen Battery Capacity via a Nanoarray Cathode Model. Journal of Physical Chemistry C, 0, , .	3.1	1
21	Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 503-508.	1.0	0