Marijke De Bock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5072026/publications.pdf Version: 2024-02-01

MADUKE DE ROCK

#	Article	IF	CITATIONS
1	The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Frontiers in Cellular Neuroscience, 2014, 8, 306.	3.7	151
2	Endothelial calcium dynamics, connexin channels and blood–brain barrier function. Progress in Neurobiology, 2013, 108, 1-20.	5.7	141
3	Connexin Channels Provide a Target to Manipulate Brain Endothelial Calcium Dynamics and Blood—Brain Barrier Permeability. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1942-1957.	4.3	135
4	Into rather unexplored terrain—transcellular transport across the blood–brain barrier. Clia, 2016, 64, 1097-1123.	4.9	118
5	Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology, 2013, 75, 506-516.	4.1	108
6	Connexin 43 Hemichannels Contribute to Cytoplasmic Ca2+ Oscillations by Providing a Bimodal Ca2+-dependent Ca2+ Entry Pathway. Journal of Biological Chemistry, 2012, 287, 12250-12266.	3.4	105
7	Pannexin1 as mediator of inflammation and cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 51-61.	4.1	85
8	Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: Gap junctions versus hemichannels. Neuropharmacology, 2013, 75, 491-505.	4.1	78
9	The dual face of connexin-based astroglial Ca2+ communication: A key player in brain physiology and a prime target in pathology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2211-2232.	4.1	74
10	A new angle on blood–CNS interfaces: A role for connexins?. FEBS Letters, 2014, 588, 1259-1270.	2.8	72
11	Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system?. Frontiers in Pharmacology, 2013, 4, 120.	3.5	57
12	Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. Journal of Experimental Medicine, 2019, 216, 916-935.	8.5	50
13	Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves. Brain Research, 2012, 1487, 78-87.	2.2	48
14	Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1099-1120.	4.1	48
15	Connexin Channels at the Glio-Vascular Interface: Gatekeepers of the Brain. Neurochemical Research, 2017, 42, 2519-2536.	3.3	38
16	At the cross-point of connexins, calcium, and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovascular Research, 2017, 113, 195-206.	3.8	37
17	Cx43 channels and signaling via IP3/Ca2+, ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death and Disease, 2020, 11, 194.	6.3	34
18	Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?. Mediators of Inflammation, 2015, 2015, 1-18.	3.0	32

MARIJKE DE BOCK

#	Article	IF	CITATIONS
19	The Effect of Helicobacter felis and Helicobacter bizzozeronii on the Gastric Mucosa in Mongolian Gerbils: a Sequential Pathological Study. Journal of Comparative Pathology, 2006, 135, 226-236.	0.4	19
20	Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores. Cell Calcium, 2015, 58, 254-263.	2.4	15
21	Calcium, a pivotal player in photodynamic therapy?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1805-1814.	4.1	15
22	Flash Photolysis of Caged IP ₃ to Trigger Intercellular Ca ²⁺ Waves. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076570.	0.3	9
23	Electroporation Loading of Membrane-Impermeable Molecules to Investigate Intra- and Intercellular Ca ²⁺ Signaling. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076562.	0.3	7
24	Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca2+Signaling. Cold Spring Harbor Protocols, 2015, 2015, pdb.top066068.	0.3	5
25	Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling. Methods in Molecular Biology, 2016, 1437, 155-169.	0.9	3