Jaebok Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071950/publications.pdf Version: 2024-02-01

LAFROK CHOL

#	Article	IF	CITATIONS
1	Baricitinib prevents GvHD by increasing Tregs via JAK3 and treats established GvHD by promoting intestinal tissue repair via EGFR. Leukemia, 2022, 36, 292-295.	3.3	10
2	Mouse models of graft-versus-host disease. Methods in Cell Biology, 2022, 168, 41-66.	0.5	1
3	Editorial: Interferons and GvHD. Frontiers in Immunology, 2022, 13, 853567.	2.2	Ο
4	Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. Journal of Clinical Investigation, 2021, 131, .	3.9	10
5	Insights into the role of the JAK/STAT signaling pathway in graft- <i>versus</i> -host disease. Therapeutic Advances in Hematology, 2020, 11, 204062072091448.	1.1	19
6	Selective targeting of α4β1 integrin attenuates murine graft versus host disease. Leukemia, 2020, 34, 3100-3104.	3.3	6
7	Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. International Journal of Molecular Sciences, 2020, 21, 4281.	1.8	9
8	A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Advances, 2020, 4, 1656-1669.	2.5	68
9	Modeling Sézary Syndrome for Immunophenotyping and Anti-Tumor Effect of Ucart and Long-Acting Interleukin-7 Combination Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, S166-S167.	2.0	0
10	Blocking JAK1/JAK2 While Sparing JAK3 Not Only Prevents GvHD but Also Promotes Damaged Tissue Repair. Blood, 2019, 134, 4420-4420.	0.6	0
11	An "off-the-shelf―fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia, 2018, 32, 1970-1983.	3.3	282
12	Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia, 2018, 32, 2483-2494.	3.3	61
13	OMIPâ€042: 21â€color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 186-189.	1.1	47
14	The Role of Janus Kinase Signaling in Graft-Versus-Host Disease and Graft Versus Leukemia. Biology of Blood and Marrow Transplantation, 2018, 24, 1125-1134.	2.0	73
15	Targeting IFNGR/IL6R or downstream JAK1/JAK2 to control GvHD. Oncotarget, 2018, 9, 35721-35722.	0.8	10
16	Selective targeting of histone modification fails to prevent graft versus host disease after hematopoietic cell transplantation. PLoS ONE, 2018, 13, e0207609.	1.1	6
17	Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity, 2018, 48, 923-936.e4.	6.6	54
18	Modeling Sézary Syndrome for Immunophenotyping and Anti-Tumor Effect of Ucart and Long-Acting Interleukin-7 Combination Therapy. Blood, 2018, 132, 340-340.	0.6	1

Јаевок Сноі

#	Article	IF	CITATIONS
19	Baricitinib Prevents and Treats GvHD through Both Immune Modulation and Enhancement of Tissue Repair. Blood, 2018, 132, 3311-3311.	0.6	0
20	Azacitidine Mitigates Graft-versus-Host Disease via Differential Effects on the Proliferation of T Effectors and Natural Regulatory T Cells In Vivo. Journal of Immunology, 2017, 198, 3746-3754.	0.4	31
21	An Off-the-Shelfâ,"¢ Fratricide-Resistant CAR-T for the Treatment of T Cell Hematologic Malignancies. Blood, 2017, 130, 844-844.	0.6	2
22	Phase I study of azacitidine following donor lymphocyte infusion for relapsed acute myeloid leukemia post allogeneic stem cell transplantation. Leukemia Research, 2016, 49, 1-6.	0.4	31
23	Pharmacologic Co-Blockade of IFNγR and IL6R Pathways to Prevent and Treat GvHD. Blood, 2016, 128, 3353-3353.	0.6	3
24	Selective Inhibition of $\hat{I} \pm 4 \hat{I}^2 1$ Integrin (VLA-4) Mitigates GvHD. Blood, 2016, 128, 3344-3344.	0.6	0
25	Maintenance Therapy with Decitabine after Allogeneic Stem Cell Transplantation for Acute Myelogenous Leukemia and Myelodysplastic Syndrome. Biology of Blood and Marrow Transplantation, 2015, 21, 1761-1769.	2.0	143
26	A Phase I/II Trial of Intravenous Azacitidine for Acute Gvhd Prophylaxis in Patients Undergoing Matched Unrelated Stem Cell Transplantation: Phase I Results. Blood, 2015, 126, 1935-1935.	0.6	2
27	GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS ONE, 2015, 10, e0133854.	1.1	25
28	Targeting Alpha 4 Integrin (CD49d) to Reduce GvHD. Blood, 2015, 126, 4283-4283.	0.6	0
29	Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect. PLoS ONE, 2014, 9, e109799.	1.1	123
30	Effect of Epigallocatechin-3-Gallate on Graft-Versus-Host Disease. Cell Transplantation, 2014, 23, 1163-1166.	1.2	5
31	Dysregulated Overexpression of S100A8 and S100A9 Calgranulin Family Proteins in IFNÎ ³ R-/- Allogeneic T Cells Is Associated with Reduced Graft Versus Host Disease in Vivo. Blood, 2014, 124, 3828-3828.	0.6	0
32	Targeting VLA-4 to Reduce GvHD. Blood, 2014, 124, 3829-3829.	0.6	13
33	F11R Is a Novel Monocyte Prognostic Biomarker for Malignant Glioma. PLoS ONE, 2013, 8, e77571.	1.1	40
34	Defining The Mechanism Involved In The Inhibition Of GvHD By Azacytidine In Vivo Through The Use Of FoxP3 Diphtheria Toxin Receptor (Foxp3DTR) Donor T Cells. Blood, 2013, 122, 134-134.	0.6	3
35	Maintenance Therapy With Decitabine After Allogeneic Hematopoietic Stem Cell Transplantation For Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome. Blood, 2013, 122, 4638-4638.	0.6	3
36	IFNÎ ³ R Signaling As a Therapeutic Target To Prevent GvHD While Preserving Gvl. Blood, 2013, 122, 4464-4464.	0.6	0

Јаевок Сноі

#	Article	IF	CITATIONS
37	IFNÎ ³ R signaling mediates alloreactive T-cell trafficking and GVHD. Blood, 2012, 120, 4093-4103.	0.6	132
38	Interruption of IFNÎ ³ R Signaling Results in Altered T Cell Trafficking in Vivo and Abrogation of GvHD While Maintaining a Robust GvI Response. Blood, 2012, 120, 455-455.	0.6	0
39	Use of FoxP3 Diptheria Toxin Receptor (Foxp3DTR) Donor T Cells to Define the Mechanism Involved in the Inhibition of GvHD by Azacytidine in Vivo. Blood, 2012, 120, 4113-4113.	0.6	0
40	Interruption of the IFN γR/CXCR3 Axis Results in Altered T Cell Trafficking In Vivo and Abrogation of GvHD While Maintaining a Robust Gvl Response. Blood, 2011, 118, 2971-2971.	0.6	0
41	Effect of a Novel Nucleoside Analogue, Triciribine Phosphate (TCN-P) on Murine Acute Graft-Vrs-Host Disease (aGvHD). Blood, 2011, 118, 2977-2977.	0.6	0
42	In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood, 2010, 116, 129-139.	0.6	283
43	SiglecH Positive Myeloid Cells Mobilized by Pegylated Murine GM-CSF Have Potent Allo-Suppressive Properties In Vitro Blood, 2010, 116, 1459-1459.	0.6	0
44	Effect of In Vivo Azacitidine on GvHD and Gvl: Mechanistic Studies. Blood, 2010, 116, 2537-2537.	0.6	0
45	Pegylated Recombinant Murine GM-CSF Is a Potent Mobilizer of Murine Bone Marrow Progenitors, Synergizes with BIO5192 and Plerixafor (AMD3100), and Skews Mobilized Cells to a Tolerogenic Phenotype Blood, 2009, 114, 2432-2432.	0.6	0
46	Epigenetic Control of GvHD and Gvl Using the Hypomethylating Agent Azacitidine Blood, 2009, 114, 2447-2447.	0.6	0
47	Generation of Treg-Like Cells from CD4+CD25- T Cells Occurs Via Both Foxp3 Dependent and Independent Pathways. Blood, 2008, 112, 813-813.	0.6	0
48	AFF-1, a FOS-1-Regulated Fusogen, Mediates Fusion of the Anchor Cell in C. elegans. Developmental Cell, 2007, 12, 683-698.	3.1	125
49	Generation of Treg-Like Cells from CD4+CD25- T Cells Via Epigenetic Modification Using a Demethylating Agent Decitabine Blood, 2007, 110, 62-62.	0.6	3
50	A two-promoter system of gene expression in C. elegans. Developmental Biology, 2006, 296, 537-544.	0.9	19
51	N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Developmental Biology, 2006, 297, 87-102.	0.9	15