Markus Fischer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5071726/markus-fischer-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

308 21,958 140 75 h-index g-index citations papers 26,746 6.83 316 6.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
308	Present and historical landscape structure shapes current species richness in Central European grasslands. <i>Landscape Ecology</i> , 2022 , 37, 745	4.3	O
307	The Evolution of Ecological Diversity in Frontiers in Microbiology, 2022, 13, 715637	5.7	4
306	Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. <i>Remote Sensing</i> , 2022 , 14, 786	5	
305	A hierarchical inventory of the world's mountains for global comparative mountain science <i>Scientific Data</i> , 2022 , 9, 149	8.2	О
304	Area modulates the effect of elevation but not of land use or canopy on tropical plant species richness. <i>Biodiversity and Conservation</i> , 2021 , 30, 4265	3.4	
303	Assessing the impact of grassland management on landscape multifunctionality. <i>Ecosystem Services</i> , 2021 , 52, 101366	6.1	1
302	Plant diversity effects on plant longevity and their relationships to population stability in experimental grasslands. <i>Journal of Ecology</i> , 2021 , 109, 2566-2579	6	2
301	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. <i>Nature Communications</i> , 2021 , 12, 3918	17.4	13
300	Land-use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany. <i>Ecohydrology</i> , 2021 , 14, e2301	2.5	1
299	Effects of fertilization and irrigation on vascular plant species richness, functional composition and yield in mountain grasslands. <i>Journal of Environmental Management</i> , 2021 , 279, 111629	7.9	6
298	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach. <i>Diversity and Distributions</i> , 2021 , 27, 439-453	5	3
297	Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021. <i>Insect Conservation and Diversity</i> , 2021 , 14, 144-148	3.8	4
296	Globally, plant-soil feedbacks are weak predictors of plant abundance. <i>Ecology and Evolution</i> , 2021 , 11, 1756-1768	2.8	4
295	Direct and Indirect Effects of Management Intensity and Environmental Factors on the Functional Diversity of Lichens in Central European Forests. <i>Microorganisms</i> , 2021 , 9,	4.9	2
294	Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: Response to Bruun and Heilmann-Clausen (2021). <i>Journal of Applied Ecology</i> , 2021 , 58, 1817-1826	5.8	1
293	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. <i>Nature Ecology and Evolution</i> , 2021 , 5, 1582-1593	12.3	2
292	National Forest Inventories capture the multifunctionality of managed forests in Germany. <i>Forest Ecosystems</i> , 2021 , 8,	3.8	5

(2020-2020)

291	Context dependency of biotic interactions and its relation to plant rarity. <i>Diversity and Distributions</i> , 2020 , 26, 758-768	5	4
290	Comparing experimental and field-measured traits and their variability in Central European grassland species. <i>Journal of Vegetation Science</i> , 2020 , 31, 561-570	3.1	1
289	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514	6.1	21
288	Rare species perform worse than widespread species under changed climate. <i>Biological Conservation</i> , 2020 , 246, 108586	6.2	11
287	Can multi-taxa diversity in European beech forest landscapes be increased by combining different management systems?. <i>Journal of Applied Ecology</i> , 2020 , 57, 1363-1375	5.8	18
286	Nature and People in the Andes, East African Mountains, European Alps, and Hindu Kush Himalaya: Current Research and Future Directions. <i>Mountain Research and Development</i> , 2020 , 40,	1.4	11
285	Inferring competitive outcomes, ranks and intransitivity from empirical data: A comparison of different methods. <i>Methods in Ecology and Evolution</i> , 2020 , 11, 117-128	7.7	3
284	The importance of genetic diversity for the translocation of eight threatened plant species into the wild. <i>Global Ecology and Conservation</i> , 2020 , 24, e01240	2.8	5
283	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	9 ^{11.5}	49
282	Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. <i>Conservation Letters</i> , 2020 , 13, e12749	6.9	2
281	Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1602-1611	12.3	30
2 80	Heterogeneity-diversity relationships differ between and within trophic levels in temperate forests. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1204-1212	12.3	24
279	Mountain Biodiversity Is Central to Sustainable Development in Mountains and Beyond. <i>One Earth</i> , 2020 , 3, 530-533	8.1	6
278	Connecting plant evolutionary history and human well-being at Mt. Kilimanjaro, Tanzania. <i>Botanical Journal of the Linnean Society</i> , 2020 , 194, 397-409	2.2	3
277	The results of biodiversity-ecosystem functioning experiments are realistic. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1485-1494	12.3	31
276	Overview of past, current, and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia. <i>Inland Waters</i> , 2020 , 10, 438-452	2.4	19
275	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. <i>Environmental Microbiology</i> , 2020 , 22, 873-888	5.2	13
274	Plant evolutionary assembly along elevational belts at Mt. Kilimanjaro: Using phylogenetics to asses biodiversity threats under climate change. <i>Environmental and Experimental Botany</i> , 2020 , 170, 103	3853	7

273	Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens. <i>Forests</i> , 2019 , 10, 73	2.8	13
272	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in land-use intensity, plant species richness and community composition. <i>Journal of Ecology</i> , 2019 , 107, 2635-2649	6	10
271	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. <i>Nature</i> , 2019 , 569, 404-408	50.4	203
270	Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems. <i>Journal of Vegetation Science</i> , 2019 , 30, 674-686	3.1	21
269	Increasing plant diversity of experimental grasslands alters the age and growth of Plantago lanceolata from younger and faster to older and slower. <i>Oikos</i> , 2019 , 128, 1182-1193	4	4
268	Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. <i>Nature</i> , 2019 , 568, 88-92	50.4	173
267	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. <i>Journal of Ecology</i> , 2019 , 107, 2197-2210	6	35
266	Towards the development of general rules describing landscape heterogeneity flultifunctionality relationships. <i>Journal of Applied Ecology</i> , 2019 , 56, 168-179	5.8	26
265	Disentangling the fundamental branching patterns of phylogenetic divergence to refine eco-phylogenetic analyses. <i>Journal of Biogeography</i> , 2019 , 46, 2722-2734	4.1	1
264	Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a N pulse-chasing experiment. <i>Oecologia</i> , 2019 , 191, 389-396	2.9	7
263	Exclusion of large herbivores affects understorey shrub vegetation more than herb vegetation across 147 forest sites in three German regions. <i>PLoS ONE</i> , 2019 , 14, e0218741	3.7	4
262	A new approach to study local adaptation in long-lived woody species: Virtual transplant experiments. <i>Methods in Ecology and Evolution</i> , 2019 , 10, 1761-1772	7.7	0
261	Transferring biodiversity-ecosystem function research to the management of Beal-world ecosystems. <i>Advances in Ecological Research</i> , 2019 , 61, 323-356	4.6	27
260	Radar vision in the mapping of forest biodiversity from space. <i>Nature Communications</i> , 2019 , 10, 4757	17.4	28
259	Eleven years' data of grassland management in Germany. Biodiversity Data Journal, 2019, 7, e36387	1.8	15
258	Arthropod decline in grasslands and forests is associated with landscape-level drivers. <i>Nature</i> , 2019 , 574, 671-674	50.4	372
257	Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. <i>Soil Biology and Biochemistry</i> , 2019 , 131, 9-18	7.5	23
256	Identifying the tree species compositions that maximize ecosystem functioning in European forests. <i>Journal of Applied Ecology</i> , 2019 , 56, 733-744	5.8	35

(2018-2019)

255	Specialisation and diversity of multiple trophic groups are promoted by different forest features. <i>Ecology Letters</i> , 2019 , 22, 170-180	10	49
254	Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. Forest Ecology and Management, 2019, 432, 860-867	3.9	37
253	Effects of forest management on bryophyte species richness in Central European forests. <i>Forest Ecology and Management</i> , 2019 , 432, 850-859	3.9	17
252	Two closely related species differ in their regional genetic differentiation despite admixing. <i>AoB PLANTS</i> , 2018 , 10, ply007	2.9	4
251	Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. <i>Ecology</i> , 2018 , 99, 597-606	4.6	30
250	Relations between forest management, stand structure and productivity across different types of Central European forests. <i>Basic and Applied Ecology</i> , 2018 , 32, 39-52	3.2	59
249	Hemiparasite-density effects on grassland plant diversity, composition and biomass. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2018 , 32, 22-29	3	11
248	Redefining ecosystem multifunctionality. <i>Nature Ecology and Evolution</i> , 2018 , 2, 427-436	12.3	241
247	Phylogenetic classification of the world's tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1837-1842	11.5	107
246	Does plant diversity affect the water balance of established grassland systems?. <i>Ecohydrology</i> , 2018 , 11, e1945	2.5	5
245	Phenological shifts and flower visitation of 185 lowland and alpine species in a lowland botanical garden. <i>Alpine Botany</i> , 2018 , 128, 23-33	2.5	6
244	Effects of mowing, grazing and fertilization on soil seed banks in temperate grasslands in Central Europe. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 256, 211-217	5.7	15
243	High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. <i>Global Change Biology</i> , 2018 , 24, 2021-2034	11.4	65
242	And the winner is \square ! A test of simple predictors of plant species richness in agricultural grasslands. <i>Ecological Indicators</i> , 2018 , 87, 296-301	5.8	8
241	Intra- and interspecific tree diversity promotes multitrophic plantHemipteraInt interactions in a forest diversity experiment. <i>Basic and Applied Ecology</i> , 2018 , 29, 89-97	3.2	6
240	Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. <i>Global Change Biology</i> , 2018 , 24, 2828-2840	11.4	15
239	Elevational transplantation suggests different responses of African submontane and savanna plants to climate warming. <i>Journal of Ecology</i> , 2018 , 106, 296-305	6	4
238	Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. <i>Restoration Ecology</i> , 2018 , 26, S114-S122	3.1	19

237	Increase in CO concentration could alter the response of to climate change. <i>Ecology and Evolution</i> , 2018 , 8, 8598-8606	2.8	7
236	Direct and indirect effects of land use on bryophytes in grasslands. <i>Science of the Total Environment</i> , 2018 , 644, 60-67	10.2	15
235	Plant niche breadths along environmental gradients and their relationship to plant functional traits. <i>Diversity and Distributions</i> , 2018 , 24, 1869-1882	5	16
234	Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. <i>Nature Communications</i> , 2018 , 9, 3177	17.4	31
233	Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. <i>Heredity</i> , 2018 , 121, 257-265	3.6	43
232	Connecting experimental biodiversity research to real-world grasslands. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2018 , 33, 78-88	3	12
231	Biodiversity-multifunctionality relationships depend on identity and number of measured functions. <i>Nature Ecology and Evolution</i> , 2018 , 2, 44-49	12.3	85
230	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. <i>Journal of Plant Nutrition and Soil Science</i> , 2018 , 181, 185-197	2.3	9
229	Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. <i>Ecology and Evolution</i> , 2018 , 8, 601-616	2.8	14
228	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. <i>Ecology Letters</i> , 2018 , 21, 31-42	10	47
227	The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. <i>Journal of Applied Ecology</i> , 2018 , 55, 267-278	5.8	125
226	Multiple forest attributes underpin the supply of multiple ecosystem services. <i>Nature Communications</i> , 2018 , 9, 4839	17.4	99
225	Impacts of species richness on productivity in a large-scale subtropical forest experiment. <i>Science</i> , 2018 , 362, 80-83	33.3	220
224	Fagus sylvatica seedlings show provenance differentiation rather than adaptation to soil in a transplant experiment. <i>BMC Ecology</i> , 2018 , 18, 42	2.7	5
223	Genetic differentiation, phenotypic plasticity and adaptation in a hybridizing pair of a more common and a less common Carex species. <i>Alpine Botany</i> , 2018 , 128, 149-167	2.5	3
222	Sensitivity of functional diversity metrics to sampling intensity. <i>Methods in Ecology and Evolution</i> , 2017 , 8, 1072-1080	7.7	13
221	Despite admixing two closely related Carex species differ in their regional morphological differentiation. <i>Plant Systematics and Evolution</i> , 2017 , 303, 901-914	1.3	2
220	Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. <i>Mycorrhiza</i> , 2017 , 27, 233-245	3.9	24

219	Africal highest mountain harbours Africal tallest trees. <i>Biodiversity and Conservation</i> , 2017 , 26, 103-113	3 3.4	15
218	Growth ring analysis of multiple dicotyledonous herb species novel community-wide approach. <i>Basic and Applied Ecology</i> , 2017 , 21, 23-33	3.2	9
217	Usable wild plant species in relation to elevation and land use at Mount Kilimanjaro, Tanzania. <i>Alpine Botany</i> , 2017 , 127, 145-154	2.5	5
216	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems study from SE China. <i>Journal of Plant Ecology</i> , 2017 , 10, 111-127	1.7	68
215	Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages. <i>Journal of Plant Ecology</i> , 2017 , 10, 242-251	1.7	29
214	Species-specific effects of genetic diversity and species diversity of experimental communities on early tree performance. <i>Journal of Plant Ecology</i> , 2017 , 10, 252-258	1.7	15
213	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. <i>Ecology Letters</i> , 2017 , 20, 1414-1426	10	149
212	Opportunities for research on mountain biodiversity under global change. <i>Current Opinion in Environmental Sustainability</i> , 2017 , 29, 40-47	7.2	32
211	Toward a methodical framework for comprehensively assessing forest multifunctionality. <i>Ecology and Evolution</i> , 2017 , 7, 10652-10674	2.8	32
210	Heritability of early growth traits and their plasticity in 14 woody species of Chinese subtropical forest. <i>Journal of Plant Ecology</i> , 2017 , 10, 222-231	1.7	7
209	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. <i>Basic and Applied Ecology</i> , 2017 , 23, 1-73	3.2	184
208	Rapid transgenerational effects in Knautia arvensis in response to plant community diversity. Journal of Ecology, 2017 , 105, 714-725	6	15
207	No evidence for larger leaf trait plasticity in ecological generalists compared to specialists. <i>Journal of Biogeography</i> , 2017 , 44, 511-521	4.1	10
206	EPIGENETICS OF COLONIZING SPECIES? A STUDY OF JAPANESE KNOTWEED IN CENTRAL EUROPE 2016 , 328-340		11
205	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. <i>Nature</i> , 2016 , 536, 456-9	50.4	345
204	Genetic diversity and differentiation follow secondary succession in a multi-species study on woody plants from subtropical China. <i>Journal of Plant Ecology</i> , 2016 , rtw054	1.7	5
203	Positive biodiversity-productivity relationship predominant in global forests. <i>Science</i> , 2016 , 354,	33.3	593
202	Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. <i>Scientific Reports</i> , 2016 , 6, 36672	4.9	16

201	Transgenerational effects of land use on offspring performance and growth in Trifolium repens. <i>Oecologia</i> , 2016 , 180, 409-20	2.9	3
200	Enriching plant diversity in grasslands by large-scale experimental sward disturbance and seed addition along gradients of land-use intensity. <i>Journal of Plant Ecology</i> , 2016 , rtw062	1.7	5
199	Lichen species richness is highest in non-intensively used grasslands promoting suitable microhabitats and low vascular plant competition. <i>Biodiversity and Conservation</i> , 2016 , 25, 225-238	3.4	19
198	Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. <i>Nature Communications</i> , 2016 , 7, 10697	17.4	80
197	Is fern endozoochory widespread among fern-eating herbivores?. Plant Ecology, 2016, 217, 13-20	1.7	12
196	Biotic homogenization can decrease landscape-scale forest multifunctionality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3557-62	11.5	134
195	Plant-soil feedback in East-African savanna trees. <i>Ecology</i> , 2016 , 97, 294-301	4.6	20
194	Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances. <i>Science of the Total Environment</i> , 2016 , 566-567, 215-222	10.2	20
193	Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. <i>Global Ecology and Biogeography</i> , 2016 , 25, 464-474	6.1	12
192	Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. <i>Nature Communications</i> , 2016 , 7, 11109	17.4	120
191	Land-use intensification causes multitrophic homogenization of grassland communities. <i>Nature</i> , 2016 , 540, 266-269	50.4	236
190	Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. <i>Ecosphere</i> , 2016 , 7, e01619	3.1	60
189	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. <i>Nature Communications</i> , 2016 , 7, 13736	17.4	141
188	Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. <i>Journal of Plant Ecology</i> , 2016 , 9, 805-813	1.7	5
187	Locally rare species influence grassland ecosystem multifunctionality. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	88
186	Gastropods slow down succession and maintain diversity in cryptogam communities. <i>Ecology</i> , 2016 , 97, 2184-2191	4.6	9
185	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. <i>Ecology</i> , 2015 , 96, 1492-1501	4.6	52
184	Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change. <i>American Journal of Botany</i> , 2015 , 102, 1371-9	2.7	11

183	Mapping tree density at a global scale. <i>Nature</i> , 2015 , 525, 201-5	50.4	402
182	Non-naturalized alien plants receive fewer flower visits than naturalized and native plants in a Swiss botanical garden. <i>Biological Conservation</i> , 2015 , 182, 109-116	6.2	14
181	Forest structure and composition of previously selectively logged and non-logged montane forests at Mt. Kilimanjaro. <i>Forest Ecology and Management</i> , 2015 , 337, 61-66	3.9	24
180	Endozoochory by slugs can increase bryophyte establishment and species richness. <i>Oikos</i> , 2015 , 124, 331-336	4	12
179	Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. <i>Ecosphere</i> , 2015 , 6, art45-art45	3.1	90
178	Effects of forest management on bryophyte communities on deadwood. <i>Nova Hedwigia</i> , 2015 , 100, 423	3- <u>4.3</u> 8	21
177	Mining microsatellite markers from public expressed sequence tags databases for the study of threatened plants. <i>BMC Genomics</i> , 2015 , 16, 781	4.5	14
176	Intransitive competition is widespread in plant communities and maintains their species richness. <i>Ecology Letters</i> , 2015 , 18, 790-798	10	100
175	Living in Heterogeneous Woodlands - Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?. <i>PLoS ONE</i> , 2015 , 10, e0144217	3.7	9
174	Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. <i>Frontiers in Plant Science</i> , 2015 , 6, 273	6.2	27
173	Herbivore preference drives plant community composition. <i>Ecology</i> , 2015 , 96, 2923-34	4.6	26
172	Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. <i>Ecology Letters</i> , 2015 , 18, 834-843	10	360
171	The IPBES Conceptual Framework Leonnecting nature and people. <i>Current Opinion in Environmental Sustainability</i> , 2015 , 14, 1-16	7.2	1191
170	To eat or not to eatEelationship of lichen herbivory by snails with secondary compounds and field frequency of lichens. <i>Journal of Plant Ecology</i> , 2015 , rtv005	1.7	4
169	Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model. <i>PLoS ONE</i> , 2015 , 10, e0123300	3.7	16
168	Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro. <i>PLoS ONE</i> , 2015 , 10, e0138822	3.7	30
167	Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. <i>Oecologia</i> , 2014 , 174, 1055-64	2.9	54
166	The more the merrier: Multi-species experiments in ecology. <i>Basic and Applied Ecology</i> , 2014 , 15, 1-9	3.2	56

165	Hide-and-seek in vegetation: time-to-detection is an efficient design for estimating detectability and occurrence. <i>Methods in Ecology and Evolution</i> , 2014 , 5, 433-442	7.7	27
164	Little evidence for release from herbivores as a driver of plant invasiveness from a multi-species herbivore-removal experiment. <i>Oikos</i> , 2014 , 123, 1509-1518	4	15
163	Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands. <i>Journal of Plant Ecology</i> , 2014 , 7, 509-517	1.7	11
162	Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae , Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. <i>Forest Ecology and Management</i> , 2014 , 329, 166-176	3.9	68
161	Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. <i>Ecology and Evolution</i> , 2014 , 4, 3514-24	2.8	451
160	Biotic resistance to plant invasion in grassland: Does seed predation increase with resident plant diversity?. <i>Basic and Applied Ecology</i> , 2014 , 15, 133-141	3.2	6
159	Differential responses of herbivores and herbivory to management in temperate European beech. <i>PLoS ONE</i> , 2014 , 9, e104876	3.7	16
158	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. <i>Methods in Ecology and Evolution</i> , 2014 , 5, 74-89	7.7	179
157	Interannual variation in land-use intensity enhances grassland multidiversity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 308-13	11.5	166
156	Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. <i>Ecology</i> , 2014 , 95, 1907-17	4.6	109
155	Grazing response patterns indicate isolation of semi-natural European grasslands. <i>Oikos</i> , 2014 , 123, 599)- <u>ф</u> 12	27
154	Evidence from the real world: 15N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. <i>Journal of Ecology</i> , 2014 , 102, 456-465	6	42
153	Hybridization increases invasive knotweed success. <i>Evolutionary Applications</i> , 2014 , 7, 413-20	4.8	47
152	More efficient aboveground nitrogen use in more diverse Central European forest canopies. <i>Forest Ecology and Management</i> , 2014 , 313, 274-282	3.9	21
151	Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. <i>Environmental Microbiology</i> , 2014 , 16, 658-75	5.2	70
150	Does land-use intensification decrease plant phylogenetic diversity in local grasslands?. <i>PLoS ONE</i> , 2014 , 9, e103252	3.7	15
149	Resource-mediated indirect effects of grassland management on arthropod diversity. <i>PLoS ONE</i> , 2014 , 9, e107033	3.7	30
148	Temporal changes in randomness of bird communities across Central Europe. <i>PLoS ONE</i> , 2014 , 9, e1123	437 .7	16

(2013-2013)

147	Central European plant species from more productive habitats are more invasive at a global scale. <i>Global Ecology and Biogeography</i> , 2013 , 22, 64-72	6.1	53	
146	High plant species richness indicates management-related disturbances rather than the conservation status of forests. <i>Basic and Applied Ecology</i> , 2013 , 14, 496-505	3.2	81	
145	Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. <i>Agriculture, Ecosystems and Environment</i> , 2013 , 177, 1-9	5.7	32	
144	Experimental plant communities develop phylogenetically overdispersed abundance distributions during assembly. <i>Ecology</i> , 2013 , 94, 465-77	4.6	34	
143	A comparison of the strength of biodiversity effects across multiple functions. <i>Oecologia</i> , 2013 , 173, 223-37	2.9	82	
142	Community mean traits as additional indicators to monitor effects of land-use intensity on grassland plant diversity. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2013 , 15, 1-11	3	25	
141	Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12727-32	11.5	69	
140	Epigenetic diversity increases the productivity and stability of plant populations. <i>Nature Communications</i> , 2013 , 4, 2875	17.4	104	
139	Plant invasiveness is not linked to the capacity of regeneration from small fragments: an experimental test with 39 stoloniferous species. <i>Biological Invasions</i> , 2013 , 15, 1367-1376	2.7	15	
138	Enemy damage of exotic plant species is similar to that of natives and increases with productivity. Journal of Ecology, 2013 , 101, 388-399	6	27	
137	United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. <i>Oecologia</i> , 2013 , 171, 317-27	2.9	167	
136	Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. <i>Basic and Applied Ecology</i> , 2013 , 14, 126-136	3.2	130	
135	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2013 , 15, 281-291	3	143	
134	Environmental variability promotes plant invasion. <i>Nature Communications</i> , 2013 , 4, 1604	17.4	90	
133	Epigenetic variation creates potential for evolution of plant phenotypic plasticity. <i>New Phytologist</i> , 2013 , 197, 314-322	9.8	228	
132	Negative Effects of Conspecific Floral Density on Fruit Set of Two Neotropical Understory Plants. <i>Biotropica</i> , 2013 , 45, 325-332	2.3	1	
131	Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. <i>Forest Ecology and Management</i> , 2013 , 304, 42-48	3.9	45	
130	Fern and bryophyte endozoochory by slugs. <i>Oecologia</i> , 2013 , 172, 817-22	2.9	36	

129	Effects of native pollinator specialization, self-compatibility and flowering duration of European plant species on their invasiveness elsewhere. <i>Journal of Ecology</i> , 2013 , 101, 916-923	6	12
128	Plant-microbe-herbivore interactions in invasive and non-invasive alien plant species. <i>Functional Ecology</i> , 2013 , 27, 498-508	5.6	27
127	The cobblers stick to their lasts: pollinators prefer native over alien plant species in a multi-species experiment. <i>Biological Invasions</i> , 2013 , 15, 2577-2588	2.7	19
126	Up in the treethe overlooked richness of bryophytes and lichens in tree crowns. <i>PLoS ONE</i> , 2013 , 8, e84913	3.7	31
125	Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. <i>PLoS ONE</i> , 2013 , 8, e55461	3.7	43
124	Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?. <i>PLoS ONE</i> , 2013 , 8, e78134	3.7	11
123	Associations of forest type, parasitism and body condition of two European passerines, Fringilla coelebs and Sylvia atricapilla. <i>PLoS ONE</i> , 2013 , 8, e81395	3.7	16
122	Effects of topography, neighboring plants and size-dependence of Machillus thunbergii on sapling growth and survivorship. <i>Biodiversity Science</i> , 2013 , 21, 269-277	1.3	4
121	A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. <i>Basic and Applied Ecology</i> , 2012 , 13, 207-220	3.2	240
120	Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. <i>Ecology Letters</i> , 2012 , 15, 732-9	10	66
119	Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. <i>Ecology Letters</i> , 2012 , 15, 873-80	10	77
118	Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. <i>Journal of Ecology</i> , 2012 , 100, 1391-1399	6	154
117	Epigenetic variation in plant responses to defence hormones. <i>Annals of Botany</i> , 2012 , 110, 1423-8	4.1	61
116	Omnipresence of leaf herbivory by invertebrates and leaf infection by fungal pathogens in agriculturally used grasslands of the Swiss Alps, but low plant damage. <i>Alpine Botany</i> , 2012 , 122, 95-107	, 2.5	6
115	Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs?. <i>American Naturalist</i> , 2012 , 179, 124-31	3.7	27
114	Geographical and land-use effects on seed-mass variation in common grassland plants. <i>Basic and Applied Ecology</i> , 2012 , 13, 395-404	3.2	17
113	Regional adaptation improves the performance of grassland plant communities. <i>Basic and Applied Ecology</i> , 2012 , 13, 551-559	3.2	20
112	Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. <i>New Phytologist</i> , 2012 , 194, 859-867	9.8	94

(2011-2012)

111	grassland vegetation by means of near-infrared spectral characteristics. <i>Ecological Indicators</i> , 2012 , 14, 82-86	5.8	41
110	Inbreeding alters activities of the stress-related enzymes chitinases and £1,3-glucanases. <i>PLoS ONE</i> , 2012 , 7, e42326	3.7	13
109	Impact of land-use intensity and productivity on bryophyte diversity in agricultural grasslands. <i>PLoS ONE</i> , 2012 , 7, e51520	3.7	20
108	Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7398-406	4.8	207
107	Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. <i>Journal of Plant Ecology</i> , 2012 , 5, 270-278	1.7	24
106	Differences in soil fungal communities between European beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. <i>PLoS ONE</i> , 2012 , 7, e47500	3.7	75
105	Habitat use of large ungulates in northeastern Germany in relation to forest management. <i>Forest Ecology and Management</i> , 2011 , 261, 288-296	3.9	38
104	Establishment success of 25 rare wetland species introduced into restored habitats is best predicted by ecological distance to source habitats. <i>Biological Conservation</i> , 2011 , 144, 602-609	6.2	49
103	Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2011 , 13, 287-295	3	39
102	Community assembly during secondary forest succession in a Chinese subtropical forest. <i>Ecological Monographs</i> , 2011 , 81, 25-41	9	184
101	Lichen endozoochory by snails. <i>PLoS ONE</i> , 2011 , 6, e18770	3.7	36
100	The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. <i>Global Ecology and Biogeography</i> , 2011 , 20, 299-306	6.1	69
99	Preadapted for invasiveness: do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range?. <i>Journal of Biogeography</i> , 2011 , 38, 1294-1	304	78
98	Plant species diversity and composition of experimental grasslands affect genetic differentiation of Lolium perenne populations. <i>Molecular Ecology</i> , 2011 , 20, 2188-203	5.7	22
97	Effects of Inbreeding, Outbreeding, and Supplemental Pollen on the Reproduction of a Hummingbird-pollinated Clonal Amazonian Herb. <i>Biotropica</i> , 2011 , 43, 183-191	2.3	6
96	Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 2200-2207	7.5	54
95	The role of spatial scale and soil for local adaptation in Inula hirta. <i>Basic and Applied Ecology</i> , 2011 , 12, 152-160	3.2	32

93	Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. <i>Basic and Applied Ecology</i> , 2011 , 12, 244-250	3.2	59
92	Land-use effects on genetic structure of a common grassland herb: A matter of scale. <i>Basic and Applied Ecology</i> , 2011 , 12, 440-448	3.2	20
91	Adaptation of Poa alpina to altitude and land use in the Swiss Alps. Alpine Botany, 2011, 121, 91-105	2.5	20
90	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. <i>Journal of Apicultural Research</i> , 2011 , 50, 152	-764	49
89	Tradeoffs associated with constitutive and induced plant resistance against herbivory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 5685-9	11.5	168
88	More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17034-9	11.5	162
87	A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. <i>New Phytologist</i> , 2010 , 185, 1087-99	9.8	106
86	Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. <i>Nature</i> , 2010 , 468, 553-6	50.4	614
85	A meta-analysis of trait differences between invasive and non-invasive plant species. <i>Ecology Letters</i> , 2010 , 13, 235-45	10	1134
84	Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. <i>Ecology Letters</i> , 2010 , 13, 947-58	10	306
83	Between-population outbreeding affects plant defence. <i>PLoS ONE</i> , 2010 , 5, e12614	3.7	14
82	Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. <i>PLoS ONE</i> , 2010 , 5, e13382	3.7	79
81	On the relationship between plant species diversity and genetic diversity of Plantago lanceolata (Plantaginaceae) within and between grassland communities. <i>Journal of Plant Ecology</i> , 2010 , 3, 41-48	1.7	34
80	Experiment meets biogeography: plants of river corridor distribution are not more stress tolerant but benefit less from more benign conditions elsewhere. <i>Journal of Plant Ecology</i> , 2010 , 3, 149-155	1.7	13
79	Time course of plant diversity effects on Centaurea jacea establishment and the role of competition and herbivory. <i>Journal of Plant Ecology</i> , 2010 , 3, 109-121	1.7	12
78	Exploratories for Large-Scale and Long-Term Functional Biodiversity Research 2010 , 429-443		6
77	Experimental establishment of a declining dry-grassland flagship species in relation to seed origin and target environment. <i>Biological Conservation</i> , 2010 , 143, 1202-1211	6.2	7
76	Climate-neutral ecology conferences: just do it!. <i>Trends in Ecology and Evolution</i> , 2010 , 25, 61	10.9	19

(2007-2010)

75	Plant community diversity and composition affect individual plant performance. <i>Oecologia</i> , 2010 , 164, 665-77	2.9	28
74	Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. <i>Basic and Applied Ecology</i> , 2010 , 11, 473-485	3.2	510
73	Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. <i>Journal of Ecology</i> , 2009 , 97, 385-392	6	68
72	Consequences of near and far between-population crosses for offspring fitness in a rare herb. <i>Plant Biology</i> , 2009 , 11, 829-36	3.7	13
71	Plant species richness and functional composition drive overyielding in a six-year grassland experiment. <i>Ecology</i> , 2009 , 90, 3290-302	4.6	263
70	Effects of experimental inbreeding on herbivore resistance and plant fitness: the role of history of inbreeding, herbivory and abiotic factors. <i>Ecology Letters</i> , 2008 , 11, 1101-10	10	36
69	Habitat fragmentation and adaptation: a reciprocal replant E ransplant experiment among 15 populations of Lychnis flos-cuculi. <i>Journal of Ecology</i> , 2008 , 96, 1056-1064	6	43
68	Adaptive rather than non-adaptive evolution of Mimulus guttatus in its invasive range. <i>Basic and Applied Ecology</i> , 2008 , 9, 213-223	3.2	54
67	The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. <i>Basic and Applied Ecology</i> , 2008 , 9, 494-503	3.2	53
66	Agricultural Land Use and Biodiversity in the Alps. Mountain Research and Development, 2008, 28, 148-	15 <u>6</u> 4	75
65	Simulating the evolution of a clonal trait in plants with sexual and vegetative reproduction. <i>Journal of Plant Ecology</i> , 2008 , 1, 161-171	1.7	2
64	Support for the predictions of the pollinator-mediated stabilizing selection hypothesis. <i>Journal of Plant Ecology</i> , 2008 , 1, 173-178	1.7	18
63	Niche differentiation between diploid and hexaploid Aster amellus. <i>Oecologia</i> , 2008 , 158, 463-72	2.9	56
62	Dispersal and seed limitation affect diversity and productivity of montane grasslands. <i>Oikos</i> , 2008 , 117, 1469-1478	4	43
61	A meta-analysis of local adaptation in plants. <i>PLoS ONE</i> , 2008 , 3, e4010	3.7	657
60	Reproductive assurance through self-fertilization does not vary with population size in the alien invasive plant Datura stramonium. <i>Oikos</i> , 2007 , 116, 1400-1412	4	37
59	Genetic isolation of fragmented populations is exacerbated by drift and selection. <i>Journal of Evolutionary Biology</i> , 2007 , 20, 534-42	2.3	109
58	Selection on phenotypic plasticity of morphological traits in response to flooding and competition in the clonal shore plant Ranunculus reptans. <i>Journal of Evolutionary Biology</i> , 2007 , 20, 2126-37	2.3	22

57	Predicting naturalization of southern African Iridaceae in other regions. <i>Journal of Applied Ecology</i> , 2007 , 44, 594-603	5.8	43
56	Progress in the detection of costs of phenotypic plasticity in plants. <i>New Phytologist</i> , 2007 , 176, 727-73	30 9.8	36
55	Genetic rescue persists beyond first-generation outbreeding in small populations of a rare plant. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 2357-64	4.4	72
54	Microsatellite diversity of the agriculturally important alpine grass Poa alpina in relation to land use and natural environment. <i>Annals of Botany</i> , 2007 , 100, 1249-58	4.1	33
53	Ecological rather than geographic or genetic distance affects local adaptation of the rare perennial herb, Aster amellus. <i>Biological Conservation</i> , 2007 , 139, 348-357	6.2	79
52	Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. <i>Biological Conservation</i> , 2006 , 130, 438-446	6.2	130
51	How general are positive relationships between plant population size, fitness and genetic variation?. <i>Journal of Ecology</i> , 2006 , 94, 942-952	6	623
50	A threefold genetic allee effect: population size affects cross-compatibility, inbreeding depression and drift load in the self-incompatible Ranunculus reptans. <i>Genetics</i> , 2005 , 169, 2255-65	4	90
49	Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 2005, 166, 49)-69 8	447
. 0	Isolation and characterization of microsatellite DNA markers in the grass Poa alpina L <i>Molecular</i>		
48	Ecology Notes, 2005, 5, 719-720		9
47		5.7	9
	Ecology Notes, 2005, 5, 719-720 Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis	5.7 5.8	
47	Ecology Notes, 2005 , 5, 719-720 Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. <i>Molecular Ecology</i> , 2005 , 14, 991-1000		48
47 46	Ecology Notes, 2005, 5, 719-720 Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. Molecular Ecology, 2005, 14, 991-1000 Effects of ski piste preparation on alpine vegetation. Journal of Applied Ecology, 2005, 42, 306-316 Genetic rescue in interconnected populations of small and large size of the self-incompatible	5.8	128
47 46 45	Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. <i>Molecular Ecology</i> , 2005 , 14, 991-1000 Effects of ski piste preparation on alpine vegetation. <i>Journal of Applied Ecology</i> , 2005 , 42, 306-316 Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. <i>Heredity</i> , 2005 , 95, 437-43 Three generations under low versus high neighborhood density affect the life history of a clonal	5.8 3.6	48 128 63
47 46 45	Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. <i>Molecular Ecology</i> , 2005 , 14, 991-1000 Effects of ski piste preparation on alpine vegetation. <i>Journal of Applied Ecology</i> , 2005 , 42, 306-316 Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. <i>Heredity</i> , 2005 , 95, 437-43 Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift. <i>Oikos</i> , 2005 , 108, 573-581 PERFORMANCE OF LYCHNIS FLOS-CUCULI FROM FRAGMENTED POPULATIONS UNDER	5.8 3.6	48 128 63 10
47 46 45 44 43	Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. <i>Molecular Ecology</i> , 2005 , 14, 991-1000 Effects of ski piste preparation on alpine vegetation. <i>Journal of Applied Ecology</i> , 2005 , 42, 306-316 Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. <i>Heredity</i> , 2005 , 95, 437-43 Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift. <i>Oikos</i> , 2005 , 108, 573-581 PERFORMANCE OF LYCHNIS FLOS-CUCULI FROM FRAGMENTED POPULATIONS UNDER EXPERIMENTAL BIOTIC INTERACTIONS. <i>Ecology</i> , 2005 , 86, 1002-1011 Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient.	5.8 3.6 4 4.6	48 128 63 10

(2001-2004)

39	Experimental life-history evolution: selection on growth form and its plasticity in a clonal plant. <i>Journal of Evolutionary Biology</i> , 2004 , 17, 331-41	2.3	34
38	Low genetic variation reduces cross-compatibility and offspring fitness in populations of a narrow endemic plant with a self-incompatibility system. <i>Conservation Genetics</i> , 2003 , 4, 325-336	2.6	61
37	Special feature: Plant population biology in a multidisciplinary context. <i>Basic and Applied Ecology</i> , 2003 , 4, 285-286	3.2	1
36	Effects of four generations of density-dependent selection on life history traits and their plasticity in a clonally propagated plant. <i>Journal of Evolutionary Biology</i> , 2003 , 16, 474-84	2.3	29
35	Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. <i>Journal of Ecology</i> , 2003 , 91, 587-599	6	75
34	Pollen quantity and quality affect fruit abortion in small populations of a rare fleshy-fruited shrub. <i>Basic and Applied Ecology</i> , 2002 , 3, 319-327	3.2	29
33	Characterization of microsatellite loci in Lychnis flos-cuculi (Caryophyllaceae). <i>Molecular Ecology Notes</i> , 2002 , 2, 491-492		10
32	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2168-2177	3.8	62
31	Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. <i>American Journal of Botany</i> , 2002 , 89, 801-11	2.7	56
30	Local extinctions of the wetland specialist Swertia perennis L. (Gentianaceae) in Switzerland: a revisitation study based on herbarium records. <i>Biological Conservation</i> , 2002 , 103, 65-76	6.2	59
29	Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. <i>Biological Conservation</i> , 2002 , 104, 1-11	6.2	109
28	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2168	3.8	45
27	On the evolution of clonal plant life histories 2002 , 343-360		1
26	Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2168-77	3.8	15
25	The effect of plant population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli. <i>Journal of Ecology</i> , 2001 , 89, 418-427	6	74
24	Genetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size. <i>Molecular Ecology</i> , 2001 , 10, 17-28	5.7	32
23	Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. <i>Oikos</i> , 2001 , 94, 515-524	4	92
22	On the evolution of clonal plant life histories. <i>Evolutionary Ecology</i> , 2001 , 15, 565-582	1.8	79

21	The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: a simulation study. <i>Evolutionary Ecology</i> , 2001 , 15, 281-301	1.8	62
20	ADAPTIVE EVOLUTION OF PLASTIC FORAGING RESPONSES IN A CLONAL PLANT. <i>Ecology</i> , 2001 , 82, 33	80 2. 831	9 138
19	RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). <i>American Journal of Botany</i> , 2000 , 87, 1128-1137	2.7	134
18	Clonal integration in Ranunculus reptans: by-product or adaptation?. <i>Journal of Evolutionary Biology</i> , 2000 , 13, 237-248	2.3	80
17	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1947-1955	3.8	57
16	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1947	3.8	55
15	Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. <i>Ecology Letters</i> , 2000 , 3, 530-539	10	58
14	Demographic and genetic invasion history of a 9-year-old roadside population of Bunias orientalis L. (Brassicaceae). <i>Oecologia</i> , 1999 , 120, 225-234	2.9	37
13	Plants with longer-lived seeds have lower local extinction rates in grassland remnants 1950-1985. Oecologia, 1999 , 120, 539-543	2.9	126
12	Modelling the Competitiveness of Clonal Plants by Complementary Analytical and Simulation Approaches. <i>Oikos</i> , 1999 , 85, 217	4	31
11	An isozyme study of clone diversity and relative importance of sexual and vegetative recruitment in the grass Brachypodium pinnatum. <i>Ecography</i> , 1998 , 21, 351-360	6.5	38
10	Experimental demography of the rare Gentianella germanica: seed bank formation and microsite effects on seedling establishment. <i>Ecography</i> , 1998 , 21, 269-278	6.5	42
9	Effects of population size on performance in the rare plant Gentianella germanica. <i>Journal of Ecology</i> , 1998 , 86, 195-204	6	192
8	RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). <i>American Journal of Botany</i> , 1998 , 85, 811-819	2.7	211
7	Responses of Rare Calcareous Grassland Plants to Elevated CO 2 : A Field Experiment with Gentianella Germanica and Gentiana Cruciata. <i>Journal of Ecology</i> , 1997 , 85, 681	6	27
6	Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). <i>American Journal of Botany</i> , 1997 , 84, 1685-1692	2.7	150
5	Local Extinctions of Plants in Remnants of Extensively Used Calcareous Grasslands 1950 1 985. <i>Conservation Biology</i> , 1997 , 11, 727-737	6	309
4	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity decosystem functioning relationships. <i>Research Ideas and Outcomes</i> ,5,	2.5	5

LIST OF PUBLICATIONS

3	The results of biodiversity-ecosystem functioning experiments are realistic	1
2	Strong positive biodiversityproductivity relationships in a subtropical forest experiment	1
1	Plant traits are poor predictors of long-term ecosystem functioning	2