PrzemysÅ,aw Bernat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	K143R Amino Acid Substitution in 14-α-Demethylase (Erg11p) Changes Plasma Membrane and Cell Wall Structure of Candida albicans. International Journal of Molecular Sciences, 2022, 23, 1631.	4.1	7
2	Effect of Quinoline on the Phospholipid Profile of Curvularia lunata and Its Microbial Detoxification. Molecules, 2022, 27, 2081.	3.8	6
3	Synthesis of Dolichols in Candida albicans Is Co-Regulated with Elongation of Fatty Acids. International Journal of Molecular Sciences, 2022, 23, 409.	4.1	1
4	Surfactants of microbial origin as antibiofilm agents. International Journal of Environmental Health Research, 2021, 31, 401-420.	2.7	45
5	Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Frontiers in Microbiology, 2021, 12, 636986.	3.5	11
6	Capric acid secreted by Saccharomyces boulardii influences the susceptibility of Candida albicans to fluconazole and amphotericin B. Scientific Reports, 2021, 11, 6519.	3.3	12
7	An In Vitro Study of the Effect of Viburnum opulus Extracts on Key Processes in the Development of Staphylococcal Infections. Molecules, 2021, 26, 1758.	3.8	9
8	Lactate Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida albicans. International Journal of Molecular Sciences, 2021, 22, 5219.	4.1	11
9	Phospholipids and Fatty Acids Affect the Colonization of Urological Catheters by Proteus mirabilis. International Journal of Molecular Sciences, 2021, 22, 8452.	4.1	2
10	Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: Metabolomic and proteomic studies. Microbiological Research, 2021, 249, 126770.	5.3	15
11	Lipidomic response of the entomopathogenic fungus Beauveria bassiana to pyrethroids. Scientific Reports, 2021, 11, 21319.	3.3	4
12	Potential of Trichoderma harzianum and Its Metabolites to Protect Wheat Seedlings against Fusarium culmorum and 2,4-D. International Journal of Molecular Sciences, 2021, 22, 13058.	4.1	9
13	Environmental and molecular approach to dye industry waste degradation by the ascomycete fungus Nectriella pironii. Scientific Reports, 2021, 11, 23829.	3.3	10
14	Lipid composition and cell surface hydrophobicity of <scp> <i>Candida albicans </i> </scp> influence the efficacy of fluconazole–gentamicin treatment. Yeast, 2020, 37, 117-129.	1.7	27
15	Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pesticide Biochemistry and Physiology, 2020, 163, 216-226.	3.6	15
16	Acetamiprid Affects Destruxins Production but Its Accumulation in Metarhizium sp. Spores Increases Infection Ability of Fungi. Toxins, 2020, 12, 587.	3.4	6
17	Lipids, proteins and extracellular metabolites of Trichoderma harzianum modifications caused by 2,4-dichlorophenoxyacetic acid as a plant growth stimulator. Ecotoxicology and Environmental Safety, 2020, 194, 110383.	6.0	10
18	Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile. Journal of Environmental Management, 2020, 262, 110304.	7.8	34

#	Article	IF	CITATIONS
19	Increased activity of the sterol branch of the mevalonate pathway elevates glycosylation of secretory proteins and improves antifungal properties of Trichoderma atroviride. Fungal Genetics and Biology, 2020, 137, 103334.	2.1	4
20	Lipidomic adaptations of the Metarhizium robertsii strain in response to the presence of butyltin compounds. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 316-326.	2.6	16
21	Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil. Current Microbiology, 2019, 76, 1320-1329.	2.2	13
22	Poly-Saturated Dolichols from Filamentous Fungi Modulate Activity of Dolichol-Dependent Glycosyltransferase and Physical Properties of Membranes. International Journal of Molecular Sciences, 2019, 20, 3043.	4.1	8
23	Molecular Mechanisms of Leonurus Cardiaca L. Extract Activity in Prevention of Staphylococcal Endocarditis—Study on in Vitro and ex Vivo Models. Molecules, 2019, 24, 3318.	3.8	2
24	Assessment of oxidative stress and phospholipids alterations in chloroacetanilides-degrading Trichoderma spp. Ecotoxicology and Environmental Safety, 2019, 184, 109629.	6.0	14
25	A Crucial Role for Ergosterol in Plasma Membrane Composition, Localisation, and Activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms, 2019, 7, 378.	3.6	33
26	Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. Journal of Environmental Management, 2018, 209, 65-70.	7.8	66
27	Antibacterial activity of high concentrations of carvedilol against Gram-positive and Gram-negative bacteria. International Journal of Antimicrobial Agents, 2018, 51, 458-467.	2.5	16
28	Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed. Chemosphere, 2018, 190, 174-183.	8.2	38
29	Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environmental Science and Pollution Research, 2018, 25, 2738-2743.	5.3	33
30	Kinetics of Biological Removal of the Selected Micropollutants and Their Effect on Activated Sludge Biomass. Water, Air, and Soil Pollution, 2018, 229, 356.	2.4	10
31	Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicology and Environmental Safety, 2018, 162, 1-9.	6.0	30
32	2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS ONE, 2018, 13, e0199677.	2.5	42
33	Trichoderma harzianum diminished oxidative stress caused by 2,4- dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. Journal of Plant Physiology, 2018, 229, 158-163.	3.5	18
34	Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract – As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm. PLoS ONE, 2018, 13, e0194254.	2.5	35
35	Microbial detoxification of carvedilol, a β-adrenergic antagonist, by the filamentous fungus Cunninghamella echinulata. Chemosphere, 2017, 183, 18-26.	8.2	14
36	Membrane-related hallmarks of kinetin-induced PCD of root cortex cells. Plant Cell Reports, 2017, 36, 343-353.	5.6	6

Przemyså, aw Bernat

#	Article	IF	CITATIONS
37	Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as the stabilizing agent. Journal of Dispersion Science and Technology, 2017, 38, 1647-1655.	2.4	12
38	Efficient dibutyltin (DBT) elimination by the microscopic fungus Metarhizium robertsii under conditions of intensive aeration and ascorbic acid supplementation. Environmental Science and Pollution Research, 2017, 24, 12118-12127.	5.3	4
39	Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin. Chemosphere, 2017, 185, 96-104.	8.2	9
40	Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Scientia Horticulturae, 2017, 225, 802-809.	3.6	26
41	MS/MS analysis as a tool for oxidative stress biomarker identification and profiling. New Biotechnology, 2016, 33, S22.	4.4	0
42	Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World Journal of Microbiology and Biotechnology, 2016, 32, 157.	3.6	44
43	Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition. Environmental Science and Pollution Research, 2016, 23, 8872-8880.	5.3	24
44	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€lÂgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	3.8	14
45	Lipidomics in Studies on Adaptation Mechanisms of Microorganisms to the Toxic Effects of Hazardous Compounds. , 2016, , 85-98.		1
46	Detection of biosurfactants in <i>Bacillus</i> species: genes and products identification. Journal of Applied Microbiology, 2015, 119, 1023-1034.	3.1	53
47	Estradiol improves tributyltin degradation by the filamentous fungus Metarhizium robertsii. International Biodeterioration and Biodegradation, 2015, 104, 258-263.	3.9	20
48	Fungal transformation of 17α-ethinylestradiol in the presence ofÂvarious concentrations of sodium chloride. International Biodeterioration and Biodegradation, 2015, 103, 77-84.	3.9	13
49	Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species. Environmental Science and Pollution Research, 2015, 22, 19658-19666.	5.3	16
50	Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction. Bioresource Technology, 2015, 197, 404-409.	9.6	28
51	Biodegradation of octyltin compounds by Cochliobolus lunatus and influence of xenobiotics on fungal fatty acid composition. Process Biochemistry, 2014, 49, 295-300.	3.7	5
52	Characterisation of the wheat phospholipid fraction in the presence of nickel and/or selenium. Plant Growth Regulation, 2014, 72, 163-170.	3.4	13
53	Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT). World Journal of Microbiology and Biotechnology, 2014, 30, 2343-2350.	3.6	14
54	Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environmental Science and Pollution Research, 2014, 21, 4228-4235.	5.3	44

Przemyså,aw Bernat

#	Article	IF	CITATIONS
55	Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. Journal of Hazardous Materials, 2013, 246-247, 277-282.	12.4	26
56	Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434.	5.3	15
57	Malachite green removal from aqueous solution using the system rapeseed press cake and fungus <i>Myrothecium roridum</i> . Desalination and Water Treatment, 2013, 51, 7663-7671.	1.0	16
58	Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity. Acta Biochimica Polonica, 2013, 60, 695-700.	0.5	5
59	Comparative study of fatty acids composition during cortexolone hydroxylation and tributyltin chloride (TBT) degradation in the filamentous fungus Cunninghamella elegans. International Biodeterioration and Biodegradation, 2012, 74, 1-6.	3.9	11
60	Use of Styrene as Sole Carbon Source by the Fungus Exophiala oligosperma: Optimization and Modeling of Biodegradation, Pathway Elucidation, and Cell Membrane Composition. Applied Biochemistry and Biotechnology, 2012, 168, 1351-1371.	2.9	6
61	Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration and Biodegradation, 2012, 73, 33-40.	3.9	66
62	Effect of Nickel on Membrane Integrity, Lipid Peroxidation and Fatty Acid Composition in Wheat Seedlings. Journal of Agronomy and Crop Science, 2012, 198, 286-294.	3.5	49
63	Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Archives of Microbiology, 2010, 192, 135-141.	2.2	29
64	Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii. Science of the Total Environment, 2009, 407, 4127-4133.	8.0	22
65	Action of Tributyltin (TBT) on the Lipid Content and Potassium Retention in the Organotins Degradating Fungus Cunninghamella elegans. Current Microbiology, 2009, 59, 315-320.	2.2	10
66	Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. International Biodeterioration and Biodegradation, 2009, 63, 100-105.	3.9	27
67	Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. Journal of Hazardous Materials, 2009, 171, 660-664.	12.4	13
68	Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. International Biodeterioration and Biodegradation, 2007, 60, 133-136.	3.9	22
69	Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere, 2006, 62, 3-8.	8.2	32
70	Application of microscopic fungi isolated from polluted industrial areas for polycyclic aromatic hydrocarbons and pentachlorophenol reduction. Biodegradation, 2003, 14, 1-8.	3.0	13
71	Title is missing!. Biotechnology Letters, 2002, 24, 1971-1974.	2.2	23