Takaaki Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50714/publications.pdf

Version: 2024-02-01

			516710	5	552781	
ı	52	776	16		26	
ı	papers	citations	h-index		g-index	
ı						
		50			0.61	
	52	52	52		861	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	Incorporation and conduction of proton in Sr-doped LaMO3 (M=Al, Sc, In, Yb, Y). Electrochimica Acta, 2014, 125, 443-449.	5.2	63
2	A Cocatalyst that Stabilizes a Hydride Intermediate during Photocatalytic Hydrogen Evolution over a Rhodiumâ€Doped TiO ₂ Nanosheet. Angewandte Chemie - International Edition, 2018, 57, 9073-9077.	13.8	62
3	Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors. International Journal of Hydrogen Energy, 2009, 34, 56-63.	7.1	60
4	Proton transport properties of La0.9M0.1YbO3â^ (M= Ba, Sr, Ca, Mg). Electrochimica Acta, 2013, 95, 54-59.	5.2	46
5	Incorporation and conduction of proton in SrCe0.9â^xZrxY0.1O3â^Î. Solid State Ionics, 2015, 275, 35-38.	2.7	40
6	Proton-conducting oxide and applications to hydrogen energy devices. Pure and Applied Chemistry, 2012, 85, 427-435.	1.9	36
7	Oxide ion conductivity in doped NdBalnO4. Solid State Ionics, 2016, 288, 262-265.	2.7	35
8	Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. International Journal of Hydrogen Energy, 2013, 38, 6842-6847.	7.1	33
9	Improved cycle stability of Fe–air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor. Journal of Power Sources, 2014, 262, 310-315.	7.8	26
10	A rechargeable Si–air solid state oxygen shuttle battery incorporating an oxide ion conductor. Journal of Materials Chemistry A, 2013, 1, 15212.	10.3	25
11	High performance of electroless-plated platinum electrode for electrochemical hydrogen pumps using strontium-zirconate-based proton conductors. Electrochimica Acta, 2008, 53, 8172-8177.	5. 2	24
12	Proton conduction properties of hydrous sulfated nano-titania synthesized by hydrolysis of titanyl sulfate. Solid State Ionics, 2010, 181, 1746-1749.	2.7	21
13	Incorporation of a proton into La0.9Sr0.1(Yb1â^'Mx)O3â^'Î' (M= Y, In). Solid State Ionics, 2014, 262, 865-869.	2.7	20
14	Proton transport properties of La0.9Sr0.1Yb0.8In0.2O3 $\hat{a}^{\hat{a}}$ and its application to proton ceramic fuel cell. International Journal of Hydrogen Energy, 2014, 39, 20829-20836.	7.1	20
15	Experimental and theoretical studies of hydrogen permeation for doped strontium cerates. Solid State Ionics, 2010, 181, 1328-1335.	2.7	17
16	Nanoprotonics in perovsikte-type oxides: Reversible changes in color and ion conductivity due to nanoionics phenomenon in platinum-containing perovskite oxide. Solid State Ionics, 2011, 182, 13-18.	2.7	16
17	Ce0.6Mn0.3Fe0.1O2-δas an Alternative Cathode Material for High Temperature Steam Electrolysis Using LaGaO3-based Oxide Electrolyte. Electrochimica Acta, 2016, 194, 473-479.	5.2	16
18	Photoelectrochemical H ₂ evolution using TiO ₂ -coated CaFe ₂ O ₄ without an external applied bias under visible light irradiation at 470 nm based on device modeling. Sustainable Energy and Fuels, 2017, 1, 280-287.	4.9	15

#	Article	IF	Citations
19	A Cocatalyst that Stabilizes a Hydride Intermediate during Photocatalytic Hydrogen Evolution over a Rhodiumâ€Doped TiO ₂ Nanosheet. Angewandte Chemie, 2018, 130, 9211-9215.	2.0	14
20	Characteristics of YCoO ₃ -type perovskite oxide and application as an SOFC cathode. Journal of Materials Chemistry A, 2021, 9, 3584-3588.	10.3	12
21	Low temperature operation of a solid-oxide Fe–air rechargeable battery using a La _{0.9} Sr _{0.1} Ga _{0.8} Mg _{0.2} O ₃ oxide ion conductor. Journal of Materials Chemistry A, 2015, 3, 8260-8264.	10.3	11
22	Intermediate temperature solid oxide electrolysis cell using LaGaO3-base oxide. Solid State Ionics, 2012, 225, 77-80.	2.7	10
23	Effects of Ce _{0.6} Mn _{0.3} Fe _{0.1} O _{2-Î} Interlayer on Electrochemical Properties of Microtubular SOFC Using Doped LaGaO ₃ Electrolyte. Journal of the Electrochemical Society, 2015, 162, F1379-F1383.	2.9	10
24	High Sinterability of Planetary-Bead-Milled Barium Zirconate. Electrochemistry, 2009, 77, 876-878.	1.4	9
25	Discharge Performance of Solidâ€State Oxygen Shuttle Metal–Air Battery Using Caâ€Stabilized ZrO ₂ Electrolyte. ChemSusChem, 2015, 8, 1264-1269.	6.8	9
26	Determination of Oxide Ion Conductivity in Ba-Doped LaYbO ₃ Proton-Conducting Perovskites via an Oxygen Isotope Exchange Method. Journal of Physical Chemistry C, 2021, 125, 1703-1713.	3.1	9
27	Performance of palladium electrode for electrochemical hydrogen pump using strontium-zirconate-based proton conductors. Ionics, 2009, 15, 665-670.	2.4	8
28	Preparation of nano-structured cathode for protonic ceramic fuel cell by bead-milling method. Solid State lonics, 2014, 262, 388-391.	2.7	8
29	Characteristics of Fe-air battery using Y2O3-stabilized-ZrO2 electrolyte with Ni–Fe electrode and Ba0.6La0.4CoO3-δ electrode operated at intermediate temperature. Journal of Energy Storage, 2016, 7, 115-120.	8.1	8
30	Effect of Electrochemical Polarization on the Emission of O[sup $\hat{a}^{"}$] lons from the Surface of YSZ. Journal of the Electrochemical Society, 2003, 150, E543.	2.9	7
31	Emission characteristics of Fâ°' ions into vacuum from CaF2. Solid State Ionics, 2006, 177, 1601-1605.	2.7	7
32	Atmosphere dependence of anode reaction of intermediate temperature steam electrolysis using perovskite type proton conductor. Journal of Solid State Electrochemistry, 2015, 19, 1793-1798.	2.5	7
33	Evaluation of isotope diffusion coefficient and surface exchange coefficient of ScSZ series oxide by oxygen isotope exchange method. Solid State Ionics, 2017, 301, 156-162.	2.7	7
34	Emission characteristics of negative oxygen ions into vacuum from cerium oxide. Journal of Alloys and Compounds, 2006, 408-412, 1127-1131.	5.5	6
35	Water Electrolysis Using Water-Absorbing Porous Electrolyte Consisting of a Sulfonated Nanotitania Proton Conductor. Electrochemistry, 2012, 80, 246-248.	1.4	6
36	Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide. Electrochimica Acta, 2012, 75, 179-184.	5.2	6

#	Article	IF	CITATIONS
37	Effect of Ni/Fe ratio on the performance and stability of the Fe-air rechargeable battery using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. International Journal of Hydrogen Energy, 2014, 39, 21352-21357.	7.1	6
38	Preparation of Y-doped BaZrO3 thin film electrolyte by laser chemical vapor deposition. Materials Today Communications, 2020, 24, 101184.	1.9	6
39	Long-term stability of sulfated hydrous titania-based electrolyte for water electrolysis. Journal of Solid State Electrochemistry, 2012, 16, 3587-3592.	2.5	4
40	Proton conduction properties of nano-titania modified by sulfuric acid impregnation. Journal of Solid State Electrochemistry, 2012, 16, 2055-2059.	2.5	4
41	Microtubular SOFC using doped LaGaO ₃ electrolyte film prepared with dip coating method. Journal of the Ceramic Society of Japan, 2015, 123, 182-186.	1.1	4
42	Lithium–Air Oxygen Shuttle Battery with a ZrO ₂ â€Based Ionâ€Conducting Oxide Electrolyte. ChemPlusChem, 2015, 80, 359-362.	2.8	4
43	Continuous emission of Oâ ⁻ ' ions into a vacuum from a bare surface of yttria-stabilized zirconia at elevated temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1818-1822.	2.1	3
44	Power-generating property of direct CH4 fueled SOFC using LaGaO3 electrolyte. Journal of Solid State Electrochemistry, 2010, 14, 1777-1780.	2.5	3
45	Single-nanosize pulverization of solid oxide by means of a wet planetary-bead-milling. Journal of the Ceramic Society of Japan, 2012, 120, 39-42.	1.1	3
46	Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells. Journal of Solid State Electrochemistry, 2013, 17, 2251-2258.	2.5	3
47	Preparation of Nano-Structured La _{0.6} Co _{0.2} Fe _{0.8<td>.gt;0<s< td=""><td>ub>3&an</td></s<></td>}	.gt;0 <s< td=""><td>ub>3&an</td></s<>	ub>3&an
48	Oxygen Nonstoichiometry and Cathodic Property of Ce0.6Mn0.3Fe0.1O2-Â for High Temperature Steam Electrolysis Cell Using LaGaO3-Based Oxide Electrolyte. ECS Transactions, 2015, 68, 3315-3322.	0.5	2
49	An Allâ€Solidâ€State Bromideâ€Ion Battery. ChemElectroChem, 2021, 8, 246-249.	3.4	2
50	Effects of hydrogen on phase stability of ytterbium doped strontium cerates. Materials Letters, 2010, 64, 833-835.	2.6	1
51	Fabrication of SOFC Using BaZr0.8Y0.2O3-δNano-Slurry Electrolyte. ECS Transactions, 2019, 91, 1053-1058.	0.5	O
52	Preparation of Y Doped BaZrO3 Thin Film Electrolyte By Using Laser Chemical Vapor Deposition. ECS Meeting Abstracts, 2020, MA2020-02, 2607-2607.	0.0	0