Lisa J Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071327/publications.pdf

Version: 2024-02-01

94 4,103 papers citations

38 h-index 59 g-index

96 all docs

96 docs citations 96 times ranked 5793 citing authors

#	Article	IF	CITATIONS
1	The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines, 2022, 10, 112.	1.4	12
2	Cellular Heterogeneity and Cooperativity in Glioma Persister Cells Under Temozolomide Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	0
3	Store-Operated Calcium Channels Control Proliferation and Self-Renewal of Cancer Stem Cells from Glioblastoma. Cancers, 2021, 13, 3428.	1.7	9
4	Treatment-induced shrinking of tumour aggregates: a nonlinear volume-filling chemotactic approach. Journal of Mathematical Biology, 2021, 83, 29.	0.8	0
5	Impairing temozolomide resistance driven by glioma stemâ€like cells with adjuvant immunotherapy targeting Oâ€acetyl GD2 ganglioside. International Journal of Cancer, 2020, 146, 424-438.	2.3	25
6	Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death and Disease, 2020, 11, 19.	2.7	53
7	Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells. Biochemical and Biophysical Research Communications, 2020, 533, 139-147.	1.0	36
8	Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis. Journal of Lipid Research, 2020, 61, 1025-1037.	2.0	26
9	Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Frontiers in Molecular Biosciences, 2020, 7, 620677.	1.6	80
10	Drug resistance in glioblastoma: are persisters the key to therapy?. , 2020, 3, 287-301.		23
11	NKG2D Controls Natural Reactivity of Vγ9Vΰ2 T Lymphocytes against Mesenchymal Glioblastoma Cells. Clinical Cancer Research, 2019, 25, 7218-7228.	3.2	28
12	Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine, 2019, 49, 172-188.	2.7	38
13	The vitamin K-dependent factor, protein S, regulates brain neural stem cell migration and phagocytic activities towards glioma cells. European Journal of Pharmacology, 2019, 855, 30-39.	1.7	6
14	Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. Stem Cells, 2019, 37, 1083-1094.	1.4	16
15	Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochemical Pharmacology, 2019, 162, 169-176.	2.0	147
16	IL-21 Increases the Reactivity of Allogeneic Human $V\hat{l}^39V\hat{l}^2$ T Cells Against Primary Glioblastoma Tumors. Journal of Immunotherapy, 2018, 41, 224-231.	1.2	14
17	A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathologica, 2017, 133, 645-660.	3.9	53
18	The phosphorylation of Metaxin 1 controls Bak activation during TNF $\hat{\mathbf{l}}$ ± induced cell death. Cellular Signalling, 2017, 30, 171-178.	1.7	13

#	Article	IF	Citations
19	HB-EGF is associated with DNA damage and Mcl-1 turnover in human glioma cell lines treated by Temozolomide. Biochemical and Biophysical Research Communications, 2017, 493, 1377-1383.	1.0	3
20	Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity. Clinical Cancer Research, 2017, 23, 6292-6304.	3.2	69
21	Low-Dose Pesticide Mixture Induces Senescence in Normal Mesenchymal Stem Cells (MSC) and Promotes Tumorigenic Phenotype in Premalignant MSC. Stem Cells, 2017, 35, 800-811.	1.4	20
22	Pharmacological targeting of apelin impairs glioblastoma growth. Brain, 2017, 140, 2939-2954.	3.7	70
23	Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics. Hypoxia (Auckland, N Z), 2017, Volume 5, 11-20.	1.9	26
24	Specific Inhibition of DNMT3A/ISGF3 \hat{I}^3 Interaction Increases the Temozolomide Efficiency to Reduce Tumor Growth. Theranostics, 2016, 6, 1988-1999.	4.6	17
25	Stereotaxic administrations of allogeneic human $\hat{V^{3}9}\hat{V^{2}}$ T cells efficiently control the development of human glioblastoma brain tumors. Oncolmmunology, 2016, 5, e1168554.	2.1	36
26	Prostaglandin E2 plays a major role in glioma resistance and progression. Translational Cancer Research, 2016, 5, S1073-S1077.	0.4	5
27	D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH. Cell Death and Disease, 2015, 6, e1704-e1704.	2.7	27
28	Radiation-induced PGE ₂ sustains human glioma cell growth and survival through EGF signaling. Oncotarget, 2015, 6, 6840-6849.	0.8	38
29	Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells. PLoS ONE, 2014, 9, e93505.	1.1	15
30	DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: Role of the DNMT3L/DNMT3B/p65-NFÎB complex in the (de-)methylation of TRAF1. Biochimie, 2014, 104, 36-49.	1.3	34
31	Control of glioma cell death and differentiation by PKM2–Oct4 interaction. Cell Death and Disease, 2014, 5, e1036-e1036.	2.7	71
32	Metaxins 1 and 2, two proteins of the mitochondrial protein sorting and assembly machinery, are essential for Bak activation during TNF alpha triggered apoptosis. Cellular Signalling, 2014, 26, 1928-1934.	1.7	27
33	Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma. Oncotarget, 2014, 5, 2428-2435.	0.8	46
34	Differentiation-Related Response to DNA Breaks in Human Mesenchymal Stem Cells. Stem Cells, 2013, 31, 800-807.	1.4	54
35	Targeting Metabolism to Induce Cell Death in Cancer Cells and Cancer Stem Cells. International Journal of Cell Biology, 2013, 2013, 1-13.	1.0	57
36	Oncogenic but non-essential role of N-myc downstream regulated gene 1 in the progression of esophageal squamous cell carcinoma. Cancer Biology and Therapy, 2013, 14, 164-174.	1.5	14

#	Article	IF	Citations
37	Comparison of Spheroids Formed by Rat Glioma Stem Cells and Neural Stem Cells Reveals Differences in Glucose Metabolism and Promising Therapeutic Applications. Journal of Biological Chemistry, 2012, 287, 33664-33674.	1.6	55
38	Basal Autophagy Decreased During the Differentiation of Human Adult Mesenchymal Stem Cells. Stem Cells and Development, 2012, 21, 2779-2788.	1.1	112
39	Distinct Roles of Bcl-2 and Bcl-XI in the Apoptosis of Human Bone Marrow Mesenchymal Stem Cells during Differentiation. PLoS ONE, 2011, 6, e19820.	1.1	32
40	Prostaglandins antagonistically control Bax activation during apoptosis. Cell Death and Differentiation, 2011, 18, 528-537.	5.0	41
41	Inorganic phosphate stimulates apoptosis in murine MO6-G3 odontoblast-like cells. Archives of Oral Biology, 2011, 56, 977-983.	0.8	17
42	Mcl‶ ^{128–350} fragment induces apoptosis through direct interaction with Bax. FEBS Letters, 2010, 584, 487-492.	1.3	12
43	Differential Dependence on Beclin 1 for the Regulation of Pro-Survival Autophagy by Bcl-2 and Bcl-xL in HCT116 Colorectal Cancer Cells. PLoS ONE, 2010, 5, e8755.	1.1	45
44	C-terminal Residues Regulate Localization and Function of the Antiapoptotic Protein Bfl-1. Journal of Biological Chemistry, 2009, 284, 30257-30263.	1.6	22
45	Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Journal of Cell Biology, 2009, 185, 279-290.	2.3	132
46	Evidence for a mitochondrial localization of the retinoblastoma protein. BMC Cell Biology, 2009, 10, 50.	3.0	27
47	Mitochondrial localization of the low level p53 protein in proliferative cells. Biochemical and Biophysical Research Communications, 2009, 387, 772-777.	1.0	40
48	The mitochondrial outer membrane protein import machinery: a new player in apoptosis?. Frontiers in Bioscience - Landmark, 2009, Volume, 3563.	3.0	11
49	Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Journal of Experimental Medicine, 2009, 206, i8-i8.	4.2	0
50	Bax inserts into the mitochondrial outer membrane by different mechanisms. FEBS Letters, 2008, 582, 3045-3051.	1.3	49
51	Control of Bax Homodimerization by Its Carboxyl Terminus*. Journal of Biological Chemistry, 2007, 282, 24938-24947.	1.6	19
52	Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Letters, 2007, 258, 286-290.	3.2	164
53	HA14-1, a small molecule inhibitor of Bcl-2, bypasses chemoresistance in leukaemia cells. Leukemia Research, 2007, 31, 859-863.	0.4	33
54	Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53. Oncogene, 2007, 26, 6653-6664.	2.6	45

#	Article	IF	Citations
55	TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death and Differentiation, 2007, 14, 785-794.	5.0	142
56	Mitochondria as the target of the pro-apoptotic protein Bax. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1301-1311.	0.5	210
57	Soluble factors from neuronal cultures induce a specific proliferation and resistance to apoptosis of cognate mouse skeletal muscle precursor cells. Neuroscience Letters, 2006, 407, 20-25.	1.0	4
58	Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex. Oncogene, 2005, 24, 8076-8079.	2.6	62
59	Constitutive presence of cytochrome c in the cytosol of a chemoresistant leukemic cell line. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 277-287.	2.2	15
60	Distinct Domains Control the Addressing and the Insertion of Bax into Mitochondria. Journal of Biological Chemistry, 2005, 280, 10587-10598.	1.6	85
61	The role of caspases in cell death and differentiation. Drug Resistance Updates, 2005, 8, 163-170.	6.5	61
62	Caspase-3 can be pseudo-activated by a Ca2+-dependent proteolysis at a non-canonical site. FEBS Letters, 2005, 579, 2364-2368.	1.3	18
63	The Complex Mcl-1/Bim Regulates the Sensitivity of Human Myeloma Cells to Melphalan Blood, 2005, 106, 357-357.	0.6	1
64	The p18 Truncated Form of Bax Behaves Like a Bcl-2 Homology Domain 3-only Protein. Journal of Biological Chemistry, 2004, 279, 11503-11512.	1.6	38
65	Infrared Radiation Affects the Mitochondrial Pathway of Apoptosis in Human Fibroblasts. Journal of Investigative Dermatology, 2004, 123, 823-831.	0.3	94
66	Impact of pH on Bax \hat{l}_{\pm} conformation, oligomerisation and mitochondrial integration. FEBS Letters, 2004, 578, 41-46.	1.3	41
67	Caspase 3 activation is controlled by a sequence located in the N-terminus of its large subunit. Biochemical and Biophysical Research Communications, 2004, 316, 93-99.	1.0	11
68	Impact of proapoptotic proteins Bax and Bak in tumor progression and response to treatment. Expert Review of Anticancer Therapy, 2003, 3, 563-570.	1.1	28
69	Nonredundant Role of Bax and Bak in Bid-Mediated Apoptosis. Molecular and Cellular Biology, 2003, 23, 4701-4712.	1.1	102
70	The N-terminal End of Bax Contains a Mitochondrial-targeting Signal. Journal of Biological Chemistry, 2003, 278, 11633-11641.	1.6	105
71	The expression of a new variant of the pro-apoptotic molecule Bax, Baxpsi, is correlated with an increased survival of glioblastoma multiforme patients. Human Molecular Genetics, 2002, 11, 675-687.	1.4	80
72	Involvement of the N-terminus of Bax in its intracellular localization and function. FEBS Letters, 2002, 512, 95-100.	1.3	63

#	Article	lF	Citations
73	Assessment of caspase activity as a possible prognostic factor in acute myeloid leukaemia. British Journal of Haematology, 2002, 118, 434-437.	1.2	10
74	Resistance to apoptosis is increased during metastatic dissemination of colon cancer. Clinical and Experimental Metastasis, 2002, 19, 175-180.	1.7	26
75	Expression of bcl-2, bax and bcl-xl in human gliomas: a re-appraisal. Journal of Neuro-Oncology, 2001, 52, 129-139.	1.4	29
76	Induction of chemoresistance in HL-60 cells concomitantly causes a resistance to apoptosis and the synthesis of P-glycoprotein. Leukemia, 2001, 15, 1377-1387.	3.3	28
77	Influence of bcl-2-Related Proteins on Matrix Metalloproteinase Expression in a Rat Glioma Cell Line. Biochemical and Biophysical Research Communications, 2000, 273, 411-416.	1.0	12
78	The substitution of the C-terminus of bax by that of bcl-xL does not affect its subcellular localization but abrogates its pro-apoptotic properties. FEBS Letters, 2000, 487, 161-165.	1.3	39
79	The C-Terminus of bax Is Not a Membrane Addressing/Anchoring Signal. Biochemical and Biophysical Research Communications, 1999, 260, 582-591.	1.0	48
80	Analysis of nuclear degradation during lens cell differentiation. Cell Death and Differentiation, 1998, 5, 251-261.	5.0	73
81	Induction of a Caspase-3-like Activity by Calcium in Normal Cytosolic Extracts Triggers Nuclear Apoptosis in a Cell-free System. Journal of Biological Chemistry, 1998, 273, 17559-17564.	1.6	106
82	Accumulation of NO synthase (type-I) at the neuromuscular junctions in adult mice. NeuroReport, 1996, 7, 924-926.	0.6	34
83	The Neurotrophic Activity of Fibroblast Growth Factor 1 (FGF1) Depends on Endogenous FGF1 Expression and Is Independent of the Mitogen-activated Protein Kinase Cascade Pathway. Journal of Biological Chemistry, 1996, 271, 2801-2811.	1.6	62
84	The Role of Exogenous/Endogenous Basic Fibroblast Growth Factor (FGF2) and Transforming Growth Factor \hat{l}^2 (TGF \hat{l}^2 -1) on Human Corneal Endothelial Cells Proliferation in Vitro. Experimental Cell Research, 1995, 220, 36-46.	1.2	38
85	Up-regulation of aFGF expression in quiescent cells is related to cell survival. Journal of Cellular Physiology, 1994, 158, 435-443.	2.0	53
86	Effects of Exogenous FGFs on Growth, Differentiation, and Survival of Chick Neural Retina Cells. Experimental Cell Research, 1994, 212, 30-35.	1.2	37
87	Acidic Fibroblast Growth Factor is Expressed Abundantly by Photoreceptors Within the Developing and Mature Rat Retina. European Journal of Neuroscience, 1993, 5, 1586-1595.	1.2	43
88	Acidic Fibroblast Growth Factor (aFGF) in Developing Normal and Dystrophic (mdx) Mouse Muscles. Distribution in Degenerating and Regenerating mdx Myofibres. Growth Factors, 1992, 7, 97-106.	0.5	34
89	Molecular forms of acetylcholinesterase in dystrophic (mdx) mouse tissues. Neuromuscular Disorders, 1992, 2, 87-97.	0.3	13
90	Secretion of plasminogen activators by normal bone marrow cells and leukaemic myeloid cells. Fibrinolysis, 1992, 6, 77-79.	0.5	8

#	Article	IF	CITATIONS
91	Endogenous aFGF expression and cellular changes after a demyelinating lesion in the spinal cord of adult normal mice: Immunohistochemical study. Journal of Neuroscience Research, 1992, 33, 47-59.	1.3	43
92	Acidic fibroblast growth factor (aFGF) is expressed in the neuronal and glial spinal cord cells of adult mice. Journal of Neuroscience Research, 1991, 29, 560-568.	1.3	23
93	Long-Term Culture of Human Bone Marrow Stromal Cells in the Presence of Basic Fibroblast Growth Factors, 1990, 3, 231-236.	0.5	80
94	Targeting and killing glioblastoma with monoclonal antibody to $\langle i \rangle O \langle i \rangle$ -acetyl GD2 ganglioside. Oncotarget, 0, 7, 41172-41185.	0.8	40