Yusuke Ujitoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/507122/publications.pdf

Version: 2024-02-01

		1684188	1372567
29	151	5	10
papers	citations	h-index	g-index
35	35	35	64
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Getting Insights From Twitter: What People Want to Touch in Daily Life. IEEE Transactions on Haptics, 2022, 15, 142-153.	2.7	3
2	Perceptual judgments for the softness of materials under indentation. Scientific Reports, 2022, 12, 1761.	3.3	5
3	Deformation Matching: Force Computation Based on Deformation Optimization. IEEE Transactions on Haptics, 2022, 15, 267-279.	2.7	1
4	Visual estimation of the force applied by another person. Scientific Reports, 2022, 12, 6216.	3.3	1
5	Inside Touch: Presentation of Tactile Feeling Inside Virtual Object Using Finger-Mounted Pin-Array Display. IEEE Access, 2021, 9, 75150-75157.	4.2	O
6	Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals. IEEE Transactions on Haptics, 2021, 14, 699-711.	2.7	31
7	Sense of Resistance for a Cursor Moved by User's Keystrokes. Frontiers in Psychology, 2021, 12, 652781.	2.1	2
8	Pseudo-heaviness during mid-air gestures is tuned to visual speed. , 2021, , .		0
9	Hit-Stop in VR: Combination of Pseudo-haptics and Vibration Enhances Impact Sensation., 2021,,.		1
10	Impact Vibration Source Localization in Two-Dimensional Space Around Hand. IEEE Transactions on Haptics, 2021, 14, 862-873.	2.7	4
11	GAN-Based Fine-Tuning of Vibrotactile Signals to Render Material Surfaces. IEEE Access, 2020, 8, 16656-16661.	4.2	5
12	Development of Finger-Mounted High-Density Pin-Array Haptic Display. IEEE Access, 2020, 8, 145107-145114.	4.2	16
13	Edge Vibration Improves Ability to Discriminate Roughness Difference of Adjoining Areas. IEEE Transactions on Haptics, 2020, 13, 211-218.	2.7	O
14	Influence of Sparse Contact Point and Finger Penetration in Object on Shape Recognition. IEEE Transactions on Haptics, 2020, 13, 425-435.	2.7	3
15	Vibrator Transparency: Re-using Vibrotactile Signal Assets for Different Black Box Vibrators without Re-designing. , 2020, , .		4
16	Surface Roughness Judgment During Finger Exploration Is Changeable by Visual Oscillations. Lecture Notes in Computer Science, 2020, , 33-41.	1.3	1
17	Modulating Fine Roughness Perception of Vibrotactile Textured Surface using Pseudo-haptic Effect. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 1981-1990.	4.4	15
18	Presenting Static Friction Sensation at Stick-slip Transition using Pseudo-haptic Effect., 2019, , .		4

#	Article	IF	CITATIONS
19	Inclination Manipulator. , 2019, , .		O
20	Automated Vibrotactile Generation based on Texture Images or Material Attributes using GAN. Proceedings of the International Display Workshops, 2019, , 16.	0.1	0
21	Automated Vibrotactile Generation based on Texture Images or Material Attributes using GAN. Proceedings of the International Display Workshops, 2019, , 16.	0.1	O
22	TactGAN., 2018,,.		4
23	Enhancing the Pseudo-Haptic effect on the touch panel using the virtual string. , $2018, \ldots$		10
24	Vibrotactile Signal Generation from Texture Images or Attributes Using Generative Adversarial Network. Lecture Notes in Computer Science, 2018, , 25-36.	1.3	17
25	Resistive swipe: Visuo-haptic interaction during swipe gestures to scroll background images on touch interfaces. , 2017, , .		7
26	Yubi-Toko., 2015,,.		11
27	Impact of illusory resistance on finger walking behavior. , 2015, , .		3
28	Application of the Locomotion Interface Using Anthropomorphic Finger Motion. Lecture Notes in Computer Science, 2015, , 666-674.	1.3	2
29	Sinusoidal Vibration Source Localization in Two-Dimensional Space Around the Hand. Frontiers in Psychology, $0,13,.$	2.1	1