
Reinhard Kirnbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Virus-Like Particle Enzyme-Linked Immunosorbent Assay Detects Serum Antibodies in a Majority of Women Infected With Human Papillomavirus Type 16. Journal of the National Cancer Institute, 1994, 86, 494-499.	3.0	362
2	Different Heparan Sulfate Proteoglycans Serve asCellular Receptors for HumanPapillomaviruses. Journal of Virology, 2003, 77, 13125-13135.	1.5	229
3	Chimeric L1-L2 Virus-Like Particles as Potential Broad-Spectrum Human Papillomavirus Vaccines. Journal of Virology, 2009, 83, 10085-10095.	1.5	127
4	Peripheral blood mononuclear cells represent a reservoir of bovine papillomavirus DNA in sarcoid-affected equines. Journal of General Virology, 2008, 89, 1390-1395.	1.3	81
5	Efficacy of RG1-VLP Vaccination against Infections with Genital and Cutaneous Human Papillomaviruses. Journal of Investigative Dermatology, 2013, 133, 2706-2713.	0.3	77
6	Developments in L2-based human papillomavirus (HPV) vaccines. Virus Research, 2017, 231, 166-175.	1.1	61
7	Papillomavirus-Like Particles Are an Effective Platform for Amyloid-β Immunization in Rabbits and Transgenic Mice. Journal of Immunology, 2006, 177, 2662-2670.	0.4	52
8	Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV). PLoS ONE, 2017, 12, e0169533.	1.1	43
9	Inoculation of young horses with bovine papillomavirus type 1 virions leads to early infection of PBMCs prior to pseudo-sarcoid formation. Journal of General Virology, 2011, 92, 2437-2445.	1.3	42
10	Impact of Inhibitors and L2 Antibodies upon the Infectivity of Diverse Alpha and Beta Human Papillomavirus Types. PLoS ONE, 2014, 9, e97232.	1.1	33
11	A Chimeric 18L1-45RG1 Virus-Like Particle Vaccine Cross-Protects against Oncogenic Alpha-7 Human Papillomavirus Types. PLoS ONE, 2015, 10, e0120152.	1.1	29
12	Bovine papillomavirus type 1 (BPV1) and BPV2 are closely related serotypes. Virology, 2009, 393, 1-6.	1.1	28
13	RG1-VLP and Other L2-Based, Broad-Spectrum HPV Vaccine Candidates. Journal of Clinical Medicine, 2021, 10, 1044.	1.0	28
14	Potential of a BPV1 L1 VLP vaccine to prevent BPV1- or BPV2-induced pseudo-sarcoid formation and safety and immunogenicity of EcPV2 L1 VLPs in horse. Journal of General Virology, 2017, 98, 230-241.	1.3	18
15	Optimization of RG1-VLP vaccine performance in mice with novel TLR4 agonists. Vaccine, 2021, 39, 292-302.	1.7	16
16	Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102359.	1.7	13
17	Serological relationship between cutaneous human papillomavirus types 5, 8 and 92. Journal of General Virology, 2009, 90, 136-143.	1.3	12
18	Establishment of an in vitro equine papillomavirus type 2 (EcPV2) neutralization assay and a VLP-based vaccine for protection of equids against EcPV2-associated genital tumors. Virology, 2015, 486, 284-290.	1.1	11

#	Article	IF	CITATIONS
19	Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Human Vaccines and Immunotherapeutics, 2021, 17, 2748-2761.	1.4	11
20	Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS ONE, 2015, 10, e0138722.	1.1	11
21	RG2-VLP: a Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer. Journal of Virology, 2022, 96, .	1.5	9
22	Type-specific L1 virus-like particle-mediated protection of horses from experimental bovine papillomavirus 1-induced pseudo-sarcoid formation is long-lasting. Journal of General Virology, 2017, 98, 1329-1333.	1.3	7