
Matthew Z Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5071079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waveguide-enhanced Raman spectroscopy for field detection of threat materials. , 2022, , .		0
2	MYSTAT: A compact potentiostat/galvanostat for general electrochemistry measurements. HardwareX, 2021, 9, e00163.	2.2	23
3	Figure-of-Merit Characterization of Hydrogen-Bond Acidic Sorbents for Waveguide-Enhanced Raman Spectroscopy. ACS Sensors, 2020, 5, 831-836.	7.8	13
4	Formation of spherical calcium sulfate mesocrystals: orientation controlled by subunit growth. CrystEngComm, 2019, 21, 5973-5979.	2.6	10
5	Antibacterial Copper–Hydroxyapatite Composite Coatings via Electrochemical Synthesis. Langmuir, 2019, 35, 5957-5966.	3.5	51
6	Hydroxyapatite Nanocrystal Deposited Titanium Dioxide Nanotubes Loaded with Antibiotics for Combining Biocompatibility and Antibacterial Properties. MRS Advances, 2018, 3, 1703-1709.	0.9	4
7	Enhanced Photocatalytic Activity of TiO ₂ Nanoparticles Supported on Electrically Polarized Hydroxyapatite. ACS Applied Materials & Interfaces, 2018, 10, 17232-17239.	8.0	43
8	Controllable synthesis of hydroxyapatite-supported palladium nanoparticles with enhanced catalytic activity. Surface and Coatings Technology, 2018, 351, 60-67.	4.8	6
9	α-Calcium Sulfate Hemihydrate Nanorods Synthesis: A Method for Nanoparticle Preparation by Mesocrystallization. Langmuir, 2017, 33, 2362-2369.	3.5	32
10	Silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment. Surface and Coatings Technology, 2017, 325, 39-45.	4.8	32
11	Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surface and Coatings Technology, 2016, 301, 13-19.	4.8	74
12	Hydroxyapatite Thin Films with Giant Electrical Polarization. Chemistry of Materials, 2015, 27, 1164-1171.	6.7	35
13	Electrochemical growth of composite hydroxyapatite coatings for controlled release. Surface and Coatings Technology, 2015, 276, 618-625.	4.8	16
14	Thermal stability of electrochemical–hydrothermal hydroxyapatite coatings. Ceramics International, 2015, 41, 8568-8577.	4.8	18
15	Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides. Colloids and Surfaces B: Biointerfaces, 2014, 114, 104-110.	5.0	5
16	Two-Dimensional Patterns of Poly(<i>N</i> -isopropylacrylamide) Microgels to Spatially Control Fibroblast Adhesion and Temperature-Responsive Detachment. Langmuir, 2013, 29, 12183-12193.	3.5	43
17	Control of α-Calcium Sulfate Hemihydrate Morphology Using Reverse Microemulsions. Langmuir, 2012, 28, 14137-14142.	3.5	89
18	Yttrium-Doped Hydroxyapatite Membranes with High Proton Conductivity. Chemistry of Materials, 2012, 24, 1738-1743.	6.7	43

MATTHEW Z YATES

#	Article	IF	CITATIONS
19	Carbonated Hydroxyapatite Coatings with Aligned Crystal Domains. Crystal Growth and Design, 2012, 12, 3474-3480.	3.0	33
20	Fully Dense Yttrium-Substituted Hydroxyapatite Coatings with Aligned Crystal Domains. Crystal Growth and Design, 2012, 12, 217-223.	3.0	19
21	Effect of Supersaturation on Competitive Nucleation of CaSO ₄ Phases in a Concentrated CaCl ₂ Solution. Crystal Growth and Design, 2012, 12, 1388-1394.	3.0	39
22	Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition. Surface and Coatings Technology, 2011, 205, 3975-3986.	4.8	83
23	Nafion®/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene composite membranes with electric field-aligned domains for improved direct methanol fuel cell performance. Journal of Power Sources, 2010, 195, 736-743.	7.8	22
24	Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity. Advanced Functional Materials, 2009, 19, 3941-3947.	14.9	39
25	Ceramic Membranes: Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity (Adv. Funct. Mater. 24/2009). Advanced Functional Materials, 2009, 19, NA-NA.	14.9	1
26	Electric field processing to control the structure of poly(vinylidene fluoride) composite proton conducting membranes. Journal of Membrane Science, 2009, 326, 539-548.	8.2	30
27	Encapsulation and sustained release from biodegradable microcapsules made by emulsification/freeze drying and spray/freeze drying. Journal of Colloid and Interface Science, 2009, 336, 155-161.	9.4	49
28	Fabrication of Size-Tunable TiO ₂ Tubes Using Rod-Shaped Calcite Templates. Langmuir, 2007, 23, 10333-10341.	3.5	34
29	Formation of Rod-Shaped Calcite Crystals by Microemulsion-Based Synthesis. Langmuir, 2006, 22, 5566-5569.	3.5	68
30	Carbon Dioxide Emulsion Assisted Loading of Polymer Microspheres toward Sustained Release Materials. Langmuir, 2005, 21, 3730-3732.	3.5	1
31	Electric-Field-Driven Assembly of Oriented Molecular-Sieve Films. Advanced Materials, 2004, 16, 1944-1948.	21.0	24
32	Dual Function Surfactants for Carbon Dioxide Based Microencapsulation. Langmuir, 2003, 19, 1106-1113.	3.5	10
33	Hydrothermal Synthesis of Molecular Sieve Fibers: Using Microemulsions To Control Crystal Morphology. Angewandte Chemie - International Edition, 2002, 41, 476-478.	13.8	64
34	Latexes Formed by Rapid Expansion of Polymer/CO2Suspensions into Water. 1. Hydrophilic Surfactant in Supercritical CO2. Industrial & Engineering Chemistry Research, 2001, 40, 536-543.	3.7	9
35	Steric stabilization of inorganic suspensions in carbon dioxide. Journal of Supercritical Fluids, 2000, 16, 247-260.	3.2	47
36	Trifunctional Ambidextrous Surfactants for Latexes in Supercritical CO2and Water. Macromolecules, 2000. 33. 1606-1612.	4.8	30

MATTHEW Z YATES

#	Article	IF	CITATIONS
37	In-Situ Investigation on the Mechanism of Dispersion Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2000, 33, 4008-4014.	4.8	39
38	Metal complexation with surface-active Kemp's triacid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 148, 259-270.	4.7	9
39	Polymer Coatings by Rapid Expansion of Suspensions in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 1999, 38, 3655-3662.	3.7	39
40	Poly(vinyl acetate) and Poly(vinyl acetate-co-ethylene) Latexes via Dispersion Polymerizations in Carbon Dioxide. Macromolecules, 1998, 31, 6794-6805.	4.8	97
41	Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 2. Poly(propylene oxide)- and Poly(butylene oxide)-Based Copolymers. Langmuir, 1997, 13, 1519-1528.	3.5	57
42	Leveraging Arylboronic Acid–Cellulose Binding as a Versatile and Scalable Approach to Hydrophobic Patterning. Advanced Materials Technologies, 0, , 2101280.	5.8	0