
Frances R Balkwill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer-related inflammation. Nature, 2008, 454, 436-444.	13.7	9,279
2	Tumour necrosis factor and cancer. Nature Reviews Cancer, 2009, 9, 361-371.	12.8	1,514
3	Rethinking ovarian cancer: recommendations for improving outcomes. Nature Reviews Cancer, 2011, 11, 719-725.	12.8	1,084
4	Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology, 2015, 12, 584-596.	12.5	901
5	Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nature Reviews Cancer, 2015, 15, 668-679.	12.8	839
6	Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Medicine, 1999, 5, 828-831.	15.2	777
7	"Re-educating―tumor-associated macrophages by targeting NF-κB. Journal of Experimental Medicine, 2008, 205, 1261-1268.	4.2	700
8	Paraneoplastic Thrombocytosis in Ovarian Cancer. New England Journal of Medicine, 2012, 366, 610-618.	13.9	651
9	Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology, 2012, 22, 33-40.	4.3	567
10	Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK. Journal of Immunology, 2005, 175, 1197-1205.	0.4	393
11	Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 2002, 62, 5930-8.	0.4	367
12	The chemokine system and cancer. Journal of Pathology, 2012, 226, 148-157.	2.1	355
13	The Inflammatory Cytokine Tumor Necrosis Factor-α Generates an Autocrine Tumor-Promoting Network in Epithelial Ovarian Cancer Cells. Cancer Research, 2007, 67, 585-592.	0.4	350
14	Interleukin-6 as a Therapeutic Target in Human Ovarian Cancer. Clinical Cancer Research, 2011, 17, 6083-6096.	3.2	330
15	Harnessing cytokines and chemokines for cancer therapy. Nature Reviews Clinical Oncology, 2022, 19, 237-253.	12.5	305
16	B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10662-10667.	3.3	299
17	The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 2009, 119, 3011-3023.	3.9	280
18	Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discovery, 2018, 8, 304-319.	7.7	255

FRANCES R BALKWILL

#	Article	IF	CITATIONS
19	Tumor Necrosis Factor α As a New Target for Renal Cell Carcinoma: Two Sequential Phase II Trials of Infliximab at Standard and High Dose. Journal of Clinical Oncology, 2007, 25, 4542-4549.	0.8	225
20	IL6-STAT3-HIF Signaling and Therapeutic Response to the Angiogenesis Inhibitor Sunitinib in Ovarian Clear Cell Cancer. Clinical Cancer Research, 2011, 17, 2538-2548.	3.2	217
21	A Dynamic Inflammatory Cytokine Network in the Human Ovarian Cancer Microenvironment. Cancer Research, 2012, 72, 66-75.	0.4	189
22	Interleukin-6 Stimulates Defective Angiogenesis. Cancer Research, 2015, 75, 3098-3107.	0.4	184
23	Characterization of the Extracellular Matrix of Normal and Diseased Tissues Using Proteomics. Journal of Proteome Research, 2017, 16, 3083-3091.	1.8	183
24	Murine CD27 ^(â^') Vl̂36 ⁽⁺⁾ l̂3l̂´T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3562-70.	3.3	176
25	A Strong B-cell Response Is Part of the Immune Landscape in Human High-Grade Serous Ovarian Metastases. Clinical Cancer Research, 2017, 23, 250-262.	3.2	159
26	CRISPR/Cas9-Mediated <i>Trp53</i> and <i>Brca2</i> Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Research, 2016, 76, 6118-6129.	0.4	145
27	The Inflammatory Cytokine Tumor Necrosis Factor-α Regulates Chemokine Receptor Expression on Ovarian Cancer Cells. Cancer Research, 2005, 65, 10355-10362.	0.4	138
28	Neoadjuvant Chemotherapy Modulates the Immune Microenvironment in Metastases of Tubo-Ovarian High-Grade Serous Carcinoma. Clinical Cancer Research, 2016, 22, 3025-3036.	3.2	124
29	B regulatory cells in cancer. Trends in Immunology, 2013, 34, 169-173.	2.9	110
30	Cancer associated fibroblast FAK regulates malignant cell metabolism. Nature Communications, 2020, 11, 1290.	5.8	95
31	A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. Journal of Clinical Investigation, 2017, 127, 801-813.	3.9	70
32	Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clinical Cancer Research, 2003, 9, 84-92.	3.2	69
33	Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathologica Communications, 2019, 7, 172.	2.4	65
34	TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer. Cancer Research, 2021, 81, 5706-5719.	0.4	64
35	Mouse Ovarian Cancer Models Recapitulate the Human Tumor Microenvironment and Patient Response to Treatment. Cell Reports, 2020, 30, 525-540.e7.	2.9	61
36	Human T-Lymphotropic Virus Type 1-Induced CC Chemokine Ligand 22 Maintains a High Frequency of Functional FoxP3+ Regulatory T Cells. Journal of Immunology, 2010, 185, 183-189.	0.4	60

FRANCES R BALKWILL

#	Article	IF	CITATIONS
37	The peritoneal tumour microenvironment of highâ€grade serous ovarian cancer. Journal of Pathology, 2012, 227, 136-145.	2.1	54
38	Cancer cellâ€derived lymphotoxin mediates reciprocal tumour–stromal interactions in human ovarian cancer by inducing <scp>CXCL11</scp> in fibroblasts. Journal of Pathology, 2014, 232, 43-56.	2.1	54
39	Adaptive Upregulation of EGFR Limits Attenuation of Tumor Growth by Neutralizing IL6 Antibodies, with Implications for Combined Therapy in Ovarian Cancer. Cancer Research, 2015, 75, 1255-1264.	0.4	39
40	Critical questions in ovarian cancer research and treatment: Report of an American Association for Cancer Research Special Conference. Cancer, 2019, 125, 1963-1972.	2.0	39
41	Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocrine-Related Cancer, 2019, 26, 853-865.	1.6	35
42	Specific Mechanisms of Chromosomal Instability Indicate Therapeutic Sensitivities in High-Grade Serous Ovarian Carcinoma. Cancer Research, 2020, 80, 4946-4959.	0.4	34
43	Chemotherapy Induces Tumor-Associated Macrophages that Aid Adaptive Immune Responses in Ovarian Cancer. Cancer Immunology Research, 2021, 9, 665-681.	1.6	31
44	A human multi-cellular model shows how platelets drive production of diseased extracellular matrix and tissue invasion. IScience, 2021, 24, 102676.	1.9	28
45	Combining measures of immune infiltration shows additive effect on survival prediction in high-grade serous ovarian carcinoma. British Journal of Cancer, 2020, 122, 1803-1810.	2.9	23
46	Endothelial cell junctional adhesion molecule C plays a key role in the development of tumors in a murine model of ovarian cancer. FASEB Journal, 2013, 27, 4244-4253.	0.2	21
47	Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer. IScience, 2021, 24, 102674.	1.9	16
48	A Therapeutically Actionable Protumoral Axis of Cytokines Involving IL-8, TNFα, and IL-1β. Cancer Discovery, 2022, 12, 2140-2157.	7.7	16
49	Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells. Oncotarget, 2016, 7, 15648-15661.	0.8	13
50	Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers, 2021, 13, 5998.	1.7	8
51	Interest and learning in informal science learning sites: Differences in experiences with different types of educators. PLoS ONE, 2020, 15, e0236279.	1.1	7
52	Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators. Journal of Leukocyte Biology, 2022, 111, 967-980.	1.5	7
53	Immune Mechanisms of Resistance to Cediranib in Ovarian Cancer. Molecular Cancer Therapeutics, 2022, 21, 1030-1043.	1.9	6
54	Airway dendritic cell maturation in children exposed to air pollution. PLoS ONE, 2020, 15, e0232040.	1.1	4

#	Article	IF	CITATIONS
55	Centre of the Cell: Science Comes to Life. PLoS Biology, 2015, 13, e1002240.	2.6	4
56	Mets and NETs: The Awakening Force. Immunity, 2018, 49, 798-800.	6.6	3
57	Cells are Us – combining research and public engagement. Nature Reviews Cancer, 2021, 21, 277-278.	12.8	3