
Chilin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070895/publications.pdf Version: 2024-02-01

СнимЦ

#	Article	IF	CITATIONS
1	Direct Observation of Lithium Staging in Partially Delithiated LiFePO ₄ at Atomic Resolution. Journal of the American Chemical Society, 2011, 133, 4661-4663.	13.7	219
2	Lowâ€Temperature Ionicâ€Liquidâ€Based Synthesis of Nanostructured Ironâ€Based Fluoride Cathodes for Lithium Batteries. Advanced Materials, 2010, 22, 3650-3654.	21.0	209
3	An FeF ₃ ·0.5H ₂ O Polytype: A Microporous Framework Compound with Intersecting Tunnels for Li and Na Batteries. Journal of the American Chemical Society, 2013, 135, 11425-11428.	13.7	177
4	Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 2014, 248, 642-646.	7.8	175
5	Sodium Storage and Pseudocapacitive Charge in Textured Li ₄ Ti ₅ O ₁₂ Thin Films. Journal of Physical Chemistry C, 2014, 118, 10616-10624.	3.1	150
6	Conductive Holey MoO ₂ –Mo ₃ N ₂ Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High-Loading Li–S Batteries. ACS Nano, 2019, 13, 10049-10061.	14.6	150
7	Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano, 2011, 5, 2930-2938.	14.6	149
8	A Mesoporous Ironâ€Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Advanced Functional Materials, 2011, 21, 1391-1397.	14.9	149
9	Built-In Catalysis in Confined Nanoreactors for High-Loading Li–S Batteries. ACS Nano, 2020, 14, 3365-3377.	14.6	147
10	Long-life Na–O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential. Physical Chemistry Chemical Physics, 2014, 16, 15646.	2.8	138
11	Adenine Derivative Host with Interlaced 2D Structure and Dual Lithiophilic–Sulfiphilic Sites to Enable High-Loading Li–S Batteries. ACS Nano, 2019, 13, 9520-9532.	14.6	137
12	Liquid Polydimethylsiloxane Grafting to Enable Dendriteâ€Free Li Plating for Highly Reversible Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902220.	14.9	137
13	High Rate Magnesium–Sulfur Battery with Improved Cyclability Based on Metal–Organic Framework Derivative Carbon Host. Advanced Materials, 2018, 30, 1704166.	21.0	131
14	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	13.8	130
15	High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano, 2016, 10, 5304-5313.	14.6	124
16	Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries. Chemistry of Materials, 2013, 25, 962-969.	6.7	117
17	High-Capacity Mg–Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg–Li Dual-Salt Electrolyte. ACS Nano, 2018, 12, 3424-3435.	14.6	115
18	A High apacity Cathode for Lithium Batteries Consisting of Porous Microspheres of Highly Amorphized Iron Fluoride Densified from Its Open Parent Phase. Advanced Energy Materials, 2013, 3, 113-119.	19.5	111

#	Article	IF	CITATIONS
19	Dualâ€Salt Mgâ€Based Batteries with Conversion Cathodes. Advanced Functional Materials, 2015, 25, 7300-7308.	14.9	111
20	Supernormal Conversion Anode Consisting of High-Density MoS ₂ Bubbles Wrapped in Thin Carbon Network by Self-Sulfuration of Polyoxometalate Complex. ACS Nano, 2017, 11, 7390-7400.	14.6	110
21	Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11615-11625.	8.0	109
22	Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Materials, 2018, 14, 100-117.	18.0	108
23	Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nature Communications, 2020, 11, 3716.	12.8	106
24	Enhancement of the Li Conductivity in LiF by Introducing Glass/Crystal Interfaces. Advanced Functional Materials, 2012, 22, 1145-1149.	14.9	104
25	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	12.9	104
26	Nanostructured Li-Rich Fluoride Coated by Ionic Liquid as High Ion-Conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. ACS Applied Materials & Interfaces, 2018, 10, 34322-34331.	8.0	97
27	N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Materials, 2020, 24, 644-654.	18.0	93
28	C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy and Environmental Science, 2021, 14, 3621-3631.	30.8	91
29	Cubic Perovskite Fluoride as Open Framework Cathode for Naâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1701130.	14.9	90
30	Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. Npj Computational Materials, 2018, 4, .	8.7	89
31	In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 12678-12689.	8.0	88
32	In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chemical Engineering Journal, 2020, 382, 122935.	12.7	86
33	Metal–Organic Frameworks as Electrolyte Additives To Enable Ultrastable Plating/Stripping of Li Anode with Dendrite Inhibition. ACS Applied Materials & Interfaces, 2019, 11, 3869-3879.	8.0	84
34	Ultrathin Defective C–N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 2020, 14, 1866-1878.	14.6	83
35	Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. Journal of Power Sources, 2019, 419, 72-81.	7.8	80
36	Garnet-Based Solid-State Lithium Fluoride Conversion Batteries Benefiting from Eutectic Interlayer of Superior Wettability. ACS Energy Letters, 2020, 5, 1167-1176.	17.4	79

#	Article	IF	CITATIONS
37	H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries. Energy Storage Materials, 2018, 11, 152-160.	18.0	75
38	Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. Journal of Power Sources, 2021, 501, 229946.	7.8	74
39	Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Science Bulletin, 2021, 66, 694-707.	9.0	73
40	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 14040-14050.	13.8	70
41	Defectâ€Concentrationâ€Mediated Tâ€Nb ₂ O ₅ Anodes for Durable and Fastâ€Charging Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, 2107060.	⁵ 14.9	68
42	Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Materials, 2021, 41, 436-447.	18.0	67
43	Transitionâ€Metalâ€Free Magnesiumâ€Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets. Advanced Functional Materials, 2015, 25, 6519-6526.	14.9	66
44	Dynamical SEI Reinforced by Openâ€Architecture MOF Film with Stereoscopic Lithiophilic Sites for Highâ€Performance Lithium–Metal Batteries. Advanced Functional Materials, 2021, 31, 2101034.	14.9	59
45	Charge Carrier Accumulation in Lithium Fluoride Thin Films due to Li-Ion Absorption by Titania (100) Subsurface. Nano Letters, 2012, 12, 1241-1246.	9.1	58
46	Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 16166-16174.	10.3	58
47	High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Materials, 2020, 28, 37-46.	18.0	58
48	Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7382-7389.	10.3	57
49	Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage <i>via</i> a cascading effect. Energy and Environmental Science, 2020, 13, 3149-3163.	30.8	57
50	Lithium Ion Repulsionâ€Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable Highâ€Loading Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 23256-23266.	13.8	55
51	Tetragonal Tungsten Bronze Framework as Potential Anode for Na-Ion Batteries. Chemistry of Materials, 2016, 28, 3139-3147.	6.7	48
52	Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 22257-22264.	10.3	47
53	A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy and Fuels, 2019, 3, 2642-2656.	4.9	42
54	Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes. Science Advances, 2021, 7, eabj1491.	10.3	41

#	Article	IF	CITATIONS
55	High-Rate Nanostructured Pyrite Cathodes Enabled by Fluorinated Surface and Compact Grain Stacking <i>via</i> Sulfuration of Ionic Liquid Coated Fluorides. ACS Nano, 2018, 12, 12444-12455.	14.6	40
56	Lithium dendrite-free and fast-charging for high voltage nickel-rich lithium metal batteries enabled by bifunctional sulfone-containing electrolyte additives. Journal of Power Sources, 2020, 452, 227833.	7.8	40
57	Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium–metal batteries. Journal of Materials Chemistry A, 2021, 9, 5606-5618.	10.3	40
58	Stacking of Tailored Chalcogenide Nanosheets around MoO ₂ -C Conductive Stakes Modulated by a Hybrid POMâŠ,MOF Precursor Template: Composite Conversion–Insertion Cathodes for Rechargeable Mg–Li Dual-Salt Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5966-5977.	8.0	39
59	Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Storage Materials, 2021, 37, 466-475.	18.0	38
60	Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. Journal of Materials Chemistry A, 2015, 3, 509-514.	10.3	37
61	Li-salt mediated Mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Materials, 2019, 22, 218-227.	18.0	37
62	Reversible Mg metal anode in conventional electrolyte enabled by durable heterogeneous SEI with low surface diffusion barrier. Energy Storage Materials, 2022, 46, 1-9.	18.0	37
63	Metal-Induced Crystallization of Highly Corrugated Silicon Thick Films as Potential Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 8782-8788.	8.0	35
64	Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Applied Energy Materials, 2019, 2, 4379-4388.	5.1	35
65	Hydrogen-bonding-mediated structural stability and electrochemical performance of iron fluoride cathode materials. Journal of Materials Chemistry A, 2015, 3, 16222-16228.	10.3	34
66	Triple Conductive Wiring by Electron Doping, Chelation Coating and Electrochemical Conversion in Fluffy Nb ₂ O ₅ Anodes for Fast harging Liâ€Ion Batteries. Advanced Science, 2022, 9, .	11.2	33
67	Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li–FeF ₃ Conversion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33729-33739.	8.0	32
68	Job-sharing cathode design for Li–O ₂ batteries with high energy efficiency enabled by in situ ionic liquid bonding to cover carbon surface defects. Journal of Materials Chemistry A, 2016, 4, 241-249.	10.3	31
69	NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Materials, 2022, 47, 551-560.	18.0	31
70	Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46132-46145.	8.0	29
71	A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries. Energy Storage Materials, 2020, 31, 87-94.	18.0	29
72	Ionic space charge effects in lithium fluoride thin films. Solid State Ionics, 2012, 225, 408-411.	2.7	28

#	Article	IF	CITATIONS
73	Ionic Spaceâ€Charge Depletion in Lithium Fluoride Thin Films on Sapphire (0001) Substrates. Advanced Functional Materials, 2011, 21, 2901-2905.	14.9	27
74	LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode. ACS Nano, 2019, 13, 2490-2500.	14.6	27
75	Maximizing Magnesiation Capacity of Nanowire Cluster Oxides by Conductive Macromolecule Pillaring and Multication Intercalation. Small, 2021, 17, e2102168.	10.0	25
76	Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. Journal of Power Sources, 2021, 482, 228904.	7.8	24
77	<i>In Situ</i> Sulfurized Carbon-Confined Cobalt for Long-Life Mg/S Batteries. ACS Applied Energy Materials, 2020, 3, 2516-2525.	5.1	23
78	Pre-pulverizing Ni-rich layered oxide cathodes via "liquid explosive―infiltration toward highly endurable 4.5 V lithium batteries. Energy Storage Materials, 2022, 50, 819-828.	18.0	21
79	Highly Reversible Conversion Anodes Composed of Ultralarge Monolithic Grains with Seamless Intragranular Binder and Wiring Network. ACS Applied Materials & Interfaces, 2019, 11, 23280-23290.	8.0	19
80	Tight bonding and high-efficiency utilization of S–S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. Journal of Materials Chemistry A, 2021, 9, 6160-6171.	10.3	17
81	High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chemical Engineering Journal, 2022, 446, 137294.	12.7	17
82	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie, 2021, 133, 14159-14169.	2.0	16
83	Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries. Scientific Reports, 2015, 5, 10381.	3.3	15
84	Microscopic Dynamics of Li+ in Rutile TiO2 Revealed by 8Li Î ² -Detected Nuclear Magnetic Resonance. Chemistry of Materials, 2017, 29, 10187-10197.	6.7	13
85	Stabilizing Low-Coordinated O Ions To Operate Cationic and Anionic Redox Chemistry of Li-Ion Battery Materials. ACS Applied Materials & Interfaces, 2019, 11, 37768-37778.	8.0	13
86	Lowâ€Overpotential LiF Splitting in Lithiated Fluoride Conversion Cathode Catalyzed by Spinel Oxide. Advanced Functional Materials, 2021, 31, 2009133.	14.9	12
87	Mg-Li Hybrid Batteries: The Combination of Fast Kinetics and Reduced Overpotential. Energy Material Advances, 2022, 2022, .	11.0	10
88	Bronze and pyrochlore type iron fluorides as cathode materials for Li/Na batteries. Chinese Science Bulletin, 2017, 62, 897-907.	0.7	8
89	Predicting Li-Rich Layered Oxide Compounds as High-Conductivity and Stable Solid Electrolytes. ACS Energy Letters, 2021, 6, 3793-3800.	17.4	5
90	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	2.0	3

#	Article	IF	CITATIONS
91	Lithium Ion Repulsionâ€Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High‣oading Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 23444.	2.0	2