
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070562/publications.pdf Version: 2024-02-01

IOHN F RUDKHADT

#	Article	IF	CITATIONS
1	Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology. Geoscientific Model Development, 2021, 14, 821-842.	3.6	1
2	Bistatic SAR Radar for Long-Term Snow Pack Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 218-226.	6.3	3
3	Impact of Catchment Discretization and Imputed Radiation on Model Response: A Case Study from Central Himalayan Catchment. Water (Switzerland), 2020, 12, 2339.	2.7	1
4	Improving hydropower inflow forecasts by assimilating snow data. Hydrology Research, 2020, 51, 226-237.	2.7	14
5	Evaluation of global forcing datasets for hydropower inflow simulation in Nepal. Hydrology Research, 2020, 51, 202-225.	2.7	6
6	Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model. Hydrology and Earth System Sciences, 2020, 24, 4641-4658.	4.9	12
7	Aerosol Optical Depth Over the Nepalese Cryosphere Derived From an Empirical Model. Frontiers in Earth Science, 2019, 7, .	1.8	9
8	Timeâ€Lapse Photogrammetry of Distributed Snow Depth During Snowmelt. Water Resources Research, 2019, 55, 7916-7926.	4.2	13
9	Challenges in Forecasting Water Resources of the Indus River Basin: Lessons From the Analysis and Modeling of Atmospheric and Hydrological Processes. , 2019, , 57-83.		1
10	Improving the Informational Value of MODIS Fractional Snow Cover Area Using Fuzzy Logic Based Ensemble Smoother Data Assimilation Frameworks. Remote Sensing, 2019, 11, 28.	4.0	8
11	Simulations of black carbon (BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources, and implications on glacier runoff. Atmospheric Chemistry and Physics, 2019, 19, 2441-2460.	4.9	25
12	The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 2019, 12, 4955-4997.	3.6	238
13	Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe. Journal of Hydrology and Hydromechanics, 2019, 67, 101-109.	2.0	14
14	Nasa Snowex'17 in SITU Measurements and Ground-Based Remote Sensing. , 2018, , .		1
15	Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 2018, 9, 5391.	12.8	31
16	Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches. Hydrology and Earth System Sciences, 2018, 22, 5021-5039.	4.9	43
17	Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale. Hydrology and Earth System Sciences, 2018, 22, 179-201.	4.9	22
18	Assessing Satelliteâ€Derived Radiative Forcing From Snow Impurities Through Inverse Hydrologic Modeling. Geophysical Research Letters, 2018, 45, 3531-3541.	4.0	4

#	Article	IF	CITATIONS
19	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	18.8	183
20	Synchronous volcanic eruptions and abrupt climate change â^¼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10035-10040.	7.1	58
21	Bi-static environmental SAR radar imager. , 2017, , .		1
22	A first overview of SnowEx ground-based remote sensing activities during the winter 2016–2017. , 2017, , .		11
23	Unmanned aerial system nadir reflectance and MODIS nadirÂBRDF-adjusted surface reflectances intercomparedÂoverÂGreenland. Cryosphere, 2017, 11, 1575-1589.	3.9	21
24	Tilt error in cryospheric surface radiation measurements at high latitudes: a model study. Cryosphere, 2016, 10, 613-622.	3.9	20
25	Discharge sensitivity to snowmelt parameterization: a case study for Upper Beas basin in Himachal Pradesh, India. Hydrology Research, 2016, 47, 683-700.	2.7	22
26	Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5010-5030.	3.3	20
27	Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis. Atmospheric Chemistry and Physics, 2016, 16, 12457-12476.	4.9	69
28	International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 2016, 97, 1033-1056.	3.3	54
29	Relationships of climate and irrigation factors with malaria parasite incidences in two climatically dissimilar regions in India. Journal of Arid Environments, 2016, 124, 214-224.	2.4	7
30	Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland. Atmospheric Chemistry and Physics, 2015, 15, 6827-6849.	4.9	24
31	Arctic Air Pollution: New Insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 2014, 95, 1873-1895.	3.3	107
32	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	3.3	49
33	Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmospheric Measurement Techniques, 2013, 6, 2115-2120.	3.1	79
34	The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geoscientific Model Development, 2013, 6, 1889-1904.	3.6	256
35	Correction for Yasunari et al., Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7525-7528.	7.1	6
36	Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmospheric Chemistry and Physics, 2013, 13, 933-959.	4.9	101

#	Article	IF	CITATIONS
37	Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008). Atmospheric Chemistry and Physics, 2013, 13, 4877-4893.	4.9	14
38	Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.). Atmospheric Chemistry and Physics, 2013, 13, 15-30.	4.9	69
39	Springtime boundary layer O ₃ and GEM depletion at Toolik Lake, Alaska. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3382-3391.	3.3	9
40	Aircraft-based observations and high-resolution simulations of an Icelandic dust storm. Atmospheric Chemistry and Physics, 2012, 12, 10649-10666.	4.9	10
41	Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics, 2012, 12, 2313-2343.	4.9	510
42	Anthropogenic and forest fire pollution aerosol transported to the Arctic: observations from the POLARCAT-France spring campaign. Atmospheric Chemistry and Physics, 2012, 12, 6437-6454.	4.9	33
43	Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. Atmospheric Environment, 2012, 62, 391-399.	4.1	21
44	Evidence for the uptake of atmospheric acetone and methanol by the Arctic Ocean during late summer DMSâ€Emission plumes. Journal of Geophysical Research, 2012, 117, .	3.3	18
45	New particle formation at a remote site in the eastern Mediterranean. Journal of Geophysical Research, 2012, 117, .	3.3	50
46	Aerosols and their sources at Summit Greenland – First results of continuous size- and time-resolved sampling. Atmospheric Environment, 2012, 52, 82-97.	4.1	53
47	Patterns of CO ₂ and radiocarbon across high northern latitudes during International Polar Year 2008. Journal of Geophysical Research, 2011, 116, .	3.3	59
48	Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008. Atmospheric Chemistry and Physics, 2011, 11, 10097-10123.	4.9	52
49	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
50	Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO ₂ concentration. Atmospheric Chemistry and Physics, 2011, 11, 9219-9236.	4.9	26
51	Longpath DOAS observations of surface BrO at Summit, Greenland. Atmospheric Chemistry and Physics, 2011, 11, 9899-9910.	4.9	42
52	Aerosol composition and sources in the central Arctic Ocean during ASCOS. Atmospheric Chemistry and Physics, 2011, 11, 10619-10636.	4.9	120
53	Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign. Atmospheric Chemistry and Physics, 2011, 11, 1065-1082.	4.9	79
54	In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 10975-10994.	4.9	49

#	Article	IF	CITATIONS
55	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	4.9	157
56	Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmospheric Chemistry and Physics, 2011, 11, 13339-13357.	4.9	99
57	Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds. Atmospheric Chemistry and Physics, 2011, 11, 8003-8015.	4.9	84
58	Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations. Atmospheric Chemistry and Physics, 2011, 11, 3631-3651.	4.9	47
59	High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 3393-3400.	6.3	56
60	Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmospheric Environment, 2011, 45, 4042-4050.	4.1	73
61	Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19530-19534.	7.1	551
62	Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics, 2010, 10, 669-693.	4.9	218
63	The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview. Atmospheric Chemistry and Physics, 2010, 10, 6793-6806.	4.9	61
64	Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics, 2010, 10, 9351-9368.	4.9	169
65	Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer. Atmospheric Chemistry and Physics, 2010, 10, 10223-10236.	4.9	104
66	Transport of mercury in the Arctic atmosphere: Evidence for a springâ€ŧime net sink and summerâ€ŧime source. Geophysical Research Letters, 2009, 36, .	4.0	62
67	Geographic variability of nitrate deposition and preservation over the Greenland Ice Sheet. Journal of Geophysical Research, 2009, 114, .	3.3	9
68	Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. Journal of Geophysical Research, 2009, 114, .	3.3	123
69	Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH ₃ OOH) and hydrogen peroxide (H ₂ O ₂) above polar snow. Atmospheric Chemistry and Physics. 2009. 9. 3261-3276.	4.9	25
70	Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 2007, 7, 511-534.	4.9	372
71	Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003. Atmospheric Environment, 2007, 41, 5122-5137.	4.1	105
72	An overview of air-snow exchange at Summit, Greenland: Recent experiments and findings. Atmospheric Environment, 2007, 41, 4995-5006.	4.1	23

#	Article	IF	CITATIONS
73	Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmospheric Environment, 2007, 41, 5110-5121.	4.1	55
74	The influence of regional circulation patterns on wet and dry mineral dust and sea salt deposition over Greenland. Climate Dynamics, 2007, 28, 635-647.	3.8	15
75	Influence of North Atlantic Oscillation on anthropogenic transport recorded in northwest Greenland ice cores. Journal of Geophysical Research, 2006, 111, .	3.3	26
76	Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. Journal of Geophysical Research, 2006, 111, .	3.3	205
77	Seasonal accumulation timing and preservation of nitrate in firn at Summit, Greenland. Journal of Geophysical Research, 2004, 109, .	3.3	40
78	Partitioning of formaldehyde between air and ice at â^'35°C to â^'5°C. Atmospheric Environment, 2002, 36, 2157-2163.	4.1	23
79	Changes in Greenland ice sheet elevation attributed primarily to snow accumulation variability.	27.8	76