
Chih-Hao Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070458/publications.pdf Version: 2024-02-01

Син-Нао Снамс

#	Article	IF	CITATIONS
1	Realizing performance improvement of borylated TADF materials for OLEDs. Dyes and Pigments, 2022, 197, 109892.	3.7	5
2	Imidazolylâ€Phenylcarbazoleâ€Based Host Materials and Their Use for Coâ€host Designs in Phosphorescent OLEDs. Chemistry - A European Journal, 2022, 28, .	3.3	14
3	Harnessing bipolar acceptors for highly efficient exciplex-forming systems. Journal of Materials Chemistry C, 2022, 10, 4748-4756.	5.5	5
4	Thiazoline Carbene–Cu(I)–Amide complexes: Efficient White Electroluminescence from Combined Monomer and Excimer Emission. ACS Applied Materials & Interfaces, 2022, 14, 15478-15493.	8.0	25
5	Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance. Organic Electronics, 2022, 108, 106571.	2.6	8
6	Controlling through-space and through-bond intramolecular charge transfer in bridged D–Dâ€2–A TADF emitters. Journal of Materials Chemistry C, 2021, 9, 8819-8833.	5.5	27
7	Carbazole/triphenylamine-cyanobenzimidazole hybrid bipolar host materials for green phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 92, 106090.	2.6	14
8	Dicyanoâ€ i midazole: A Facile Generation of Pure Blue TADF Materials for OLEDs. Chemistry - A European Journal, 2021, 27, 12998-13008.	3.3	19
9	Flexible light-emitting electrochemical cells on muscovite mica substrates. Organic Electronics, 2021, 96, 106218.	2.6	7
10	Carbazole-pyridine pyrroloquinoxaline/benzothiadiazine 1,1-dioxide based bipolar hosts for efficient red PhOLEDs. Organic Electronics, 2021, 96, 106217.	2.6	7
11	A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages. Materials, 2021, 14, 5723.	2.9	10
12	Design and Synthesis of Novel Phenothiazineâ€Benzothiadiazineâ€1,1â€dioxide Hybrid Organic Material for OLED Applications. ChemistrySelect, 2021, 6, 11029-11038.	1.5	4
13	Highly efficient blue and white light-emitting electrochemical cells employing substrates containing embedded diffusive layers. Organic Electronics, 2020, 77, 105515.	2.6	20
14	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 1084-1093.	8.0	31
15	Dicyano-Imidazole-Based Host Materials Possessing a Balanced Bipolar Nature To Realize Efficient OLEDs with Extremely High Luminance. Journal of Physical Chemistry C, 2020, 124, 20410-20423.	3.1	20
16	An alternative composite electrode for efficient organic light-emitting diodes. Organic Electronics, 2020, 85, 105844.	2.6	7
17	Combinational Approach To Realize Highly Efficient Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 14254-14264.	8.0	28
18	Approach to Fast Screen the Formation of an Exciplex. Journal of Physical Chemistry C, 2020, 124, 10175-10184.	3.1	11

#	Article	IF	CITATIONS
19	Facile Generation of Thermally Activated Delayed Fluorescence and Fabrication of Highly Efficient Nonâ€Doped OLEDs Based on Triazine Derivatives. Chemistry - A European Journal, 2019, 25, 16699-16711.	3.3	21
20	Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate. Organic Electronics, 2019, 75, 105442.	2.6	14
21	Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes. Organic Electronics, 2019, 67, 279-286.	2.6	16
22	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. Chemistry of Materials, 2019, 31, 6453-6464.	6.7	44
23	Naphthyl substituted triphenylamine derivatives as hole transporting materials for efficient red PhOLEDs. Dyes and Pigments, 2019, 162, 196-202.	3.7	19
24	Triarylboryl-substituted carbazoles as bipolar host materials for efficient green phosphorescent organic light-emitting devices. Dyes and Pigments, 2019, 163, 145-152.	3.7	21
25	Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition. Advanced Optical Materials, 2018, 6, 1800083.	7.3	34
26	Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments. Optical Materials, 2018, 79, 446-449.	3.6	5
27	Optically Triggered Planarization of Boryl-Substituted Phenoxazine: Another Horizon of TADF Molecules and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 12886-12896.	8.0	75
28	Role of the Diphosphine Chelate in Emissive, Chargeâ€Neutral Iridium(III) Complexes. Chemistry - A European Journal, 2018, 24, 624-635.	3.3	12
29	Efficient donor-acceptor-donor borylated compounds with extremely small ΔEST for thermally activated delayed fluorescence OLEDs. Organic Electronics, 2018, 63, 166-174.	2.6	30
30	Pure exciplex-based white organic light-emitting diodes with imitation daylight emissions. RSC Advances, 2018, 8, 30582-30588.	3.6	12
31	lsomeric spiro-[acridine-9,9′-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances. Journal of Materials Chemistry C, 2018, 6, 10088-10100.	5.5	46
32	(Bi)phenyl substituted 9-(2,2-diphenylvinyl)carbazoles as low cost hole transporting materials for efficient red PhOLEDs. Dyes and Pigments, 2018, 159, 173-178.	3.7	7
33	Luminescent Pt(<scp>ii</scp>) complexes featuring imidazolylidene–pyridylidene and dianionic bipyrazolate: from fundamentals to OLED fabrications. Journal of Materials Chemistry C, 2017, 5, 1420-1435.	5.5	37
34	Sky-blue aggregation-induced emission molecules for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6054-6060.	5.5	49
35	Enhancing extracted electroluminescence from light-emitting electrochemical cells by employing high-refractive-index substrates. Organic Electronics, 2017, 51, 149-155.	2.6	20
36	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 27090-27101.	8.0	54

#	Article	IF	CITATIONS
37	Phenanthro[9,10-d]imidazole based new host materials for efficient red phosphorescent OLEDs. Dyes and Pigments, 2017, 137, 615-621.	3.7	34
38	Naphthyl or pyrenyl substituted 2-phenylcarbazoles as hole transporting materials for organic light-emitting diodes. Dyes and Pigments, 2017, 136, 302-311.	3.7	13
39	Unprecedented Homoleptic Bisâ€Tridentate Iridium(III) Phosphors: Facile, Scaledâ€Up Production, and Superior Chemical Stability. Advanced Functional Materials, 2017, 27, 1702856.	14.9	53
40	Efficient red phosphorescent OLEDs employing 2-phenylcarbazoles-based hole transport materials. , 2016, , .		0
41	Bis-Tridentate Iridium(III) Phosphors Bearing Functional 2-Phenyl-6-(imidazol-2-ylidene)pyridine and 2-(Pyrazol-3-yl)-6-phenylpyridine Chelates for Efficient OLEDs. Organometallics, 2016, 35, 1813-1824.	2.3	63
42	Efficient red, green, blue and white organic light-emitting diodes with same exciplex host. Japanese Journal of Applied Physics, 2016, 55, 03CD02.	1.5	15
43	Using lithium carbonate-based electron injection structures in high-performance inverted organic light-emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 13123-13128.	2.8	21
44	Near infrared-emitting tris-bidentate Os(ii) phosphors: control of excited state characteristics and fabrication of OLEDs. Journal of Materials Chemistry C, 2015, 3, 4910-4920.	5.5	52
45	Heteroleptic Ir(<scp>iii</scp>) phosphors with bis-tridentate chelating architecture for high efficiency OLEDs. Journal of Materials Chemistry C, 2015, 3, 3460-3471.	5.5	55
46	Enhancing device efficiencies of solid-state white light-emitting electrochemical cells by employing waveguide coupling. Journal of Materials Chemistry C, 2015, 3, 5665-5673.	5.5	45
47	Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs. Inorganic Chemistry, 2015, 54, 4029-4038.	4.0	87
48	Ir(III)-Based Phosphors with Bipyrazolate Ancillaries; Rational Design, Photophysics, and Applications in Organic Light-Emitting Diodes. Inorganic Chemistry, 2015, 54, 10811-10821.	4.0	36
49	Mo-doped GZO films used as anodes or cathodes for highly efficient flexible blue, green and red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 12048-12055.	5.5	10
50	Improving the efficiency of white OLEDs based on a gradient refractive index substrate. , 2015, , .		1
51	Production of efficient exciplex-based red, green, blue and white organic light-emitting diodes. , 2015, ,		1
52	Solid-state white light-emitting electrochemical cells based on scattering red color conversion layers. Journal of Materials Chemistry C, 2015, 3, 12492-12498.	5.5	26
53	Highly efficient blue and deep-blue emitting zwitterionic iridium(iii) complexes: synthesis, photophysics and electroluminescence. Journal of Materials Chemistry C, 2014, 2, 2569.	5.5	42
54	Os(<scp>ii</scp>) metal phosphors bearing tridentate 2,6-di(pyrazol-3-yl)pyridine chelate: synthetic design, characterization and application in OLED fabrication. Journal of Materials Chemistry C, 2014, 2, 6269.	5.5	34

#	Article	IF	CITATIONS
55	Ga-doped TiZnO transparent conductive oxide used as an alternative anode in blue, green, and red phosphorescent OLEDs. Physical Chemistry Chemical Physics, 2014, 16, 19618-19624.	2.8	18
56	Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole–triazine derivative. Physical Chemistry Chemical Physics, 2013, 15, 15850.	2.8	115
57	A New Class of Sky-Blue-Emitting Ir(III) Phosphors Assembled Using Fluorine-Free Pyridyl Pyrimidine Cyclometalates: Application toward High-Performance Sky-Blue- and White-Emitting OLEDs. ACS Applied Materials & Interfaces, 2013, 5, 7341-7351.	8.0	90
58	Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes. Thin Solid Films, 2013, 548, 389-397.	1.8	20
59	Blue-emitting Ir(iii) phosphors with 2-pyridyl triazolate chromophores and fabrication of sky blue- and white-emitting OLEDs. Journal of Materials Chemistry C, 2013, 1, 2639.	5.5	69
60	Multifunctional carbazolocarbazoles as hole transporting and emitting host materials in red phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 3421.	5.5	29
61	A dicarbazole–triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 3832.	6.7	116
62	Phosphorescent OLEDs assembled using Os(ii) phosphors and a bipolar host material consisting of both carbazole and dibenzophosphole oxide. Journal of Materials Chemistry, 2012, 22, 10684.	6.7	53
63	A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. Journal of Materials Chemistry, 2012, 22, 870-876.	6.7	96
64	Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer. Organic Electronics, 2012, 13, 1073-1080.	2.6	58
65	Iridium(III) Complexes of a Dicyclometalated Phosphite Tripod Ligand: Strategy to Achieve Blue Phosphorescence Without Fluorine Substituents and Fabrication of OLEDs. Angewandte Chemie - International Edition, 2011, 50, 3182-3186.	13.8	128
66	High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors. Organic Electronics, 2010, 11, 266-272.	2.6	72
67	Efficient phosphorescent white OLEDs with high color rendering capability. Organic Electronics, 2010, 11, 412-418.	2.6	83
68	Solid-state light-emitting electrochemical cells employing phosphor-sensitized fluorescence. Journal of Materials Chemistry, 2010, 20, 5521.	6.7	43
69	En Route to High External Quantum Efficiency (â^¼12%), Organic Trueâ€Blueâ€Lightâ€Emitting Diodes Employir Novel Design of Iridium (III) Phosphors. Advanced Materials, 2009, 21, 2221-2225.	1g _{21.0}	195
70	Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange–red osmium complex. Organic Electronics, 2009, 10, 1235-1240.	2.6	53
71	Efficient iridium(III) based, true-blue emitting phosphorescent OLEDS employing both double emission and double buffer layers. Organic Electronics, 2009, 10, 1364-1371.	2.6	44
72	Highly Efficient Blueâ€Emitting Iridium(III) Carbene Complexes and Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2008, 47, 4542-4545.	13.8	382

#	Article	IF	CITATIONS
73	Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes. Applied Physics Letters, 2008, 92, 123303.	3.3	18
74	Pâ€212: Architecture Design for Efficient Trueâ€Blue Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2008, 39, 2005-2007.	0.3	1
75	Pâ€152: Efficient Blue Phosphorescent OLEDs Employing Novel Oligocarbazoles as Highâ€Tripletâ€Energy Host Materials. Digest of Technical Papers SID International Symposium, 2007, 38, 772-775.	0.3	1
76	Pâ€154: Efficient White OLEDs Employing Phosphorescent Sensitization. Digest of Technical Papers SID International Symposium, 2007, 38, 780-783.	0.3	0
77	64.3: Highâ€Efficiency Phosphorescent White OLEDs Using Redâ€Emitting Osmium Complex and Blueâ€Emitting Iridium Complex. Digest of Technical Papers SID International Symposium, 2007, 38, 1772-1775.	0.3	2
78	25.2: Achieving Three-Peak White Organic Light-Emitting Devices Using Wavelength-Selective Mirror Electrodes. Digest of Technical Papers SID International Symposium, 2007, 38, 1110-1113.	0.3	0
79	Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2007, 46, 2418-2421.	13.8	396
80	Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Applied Physics Letters, 2006, 88, 081114.	3.3	125
81	29.1: 200 cd/A Microcavity Two-Unit Tandem Organic Light-Emitting Devices. Digest of Technical Papers SID International Symposium, 2006, 37, 1284.	0.3	0
82	35.4: Enhancing Light Outcoupling of Organic Light-Emitting Devices by Locating Emitters around the Second Antinode of the Reflective Metal Electrode. Digest of Technical Papers SID International Symposium, 2006, 37, 1380.	0.3	1
83	Electrochemical and resonance Raman studies of nitridomanganese(V) porphyrins in nonaqueous solution. Journal of Porphyrins and Phthalocyanines, 2003, 07, 674-681.	0.8	2