J R Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070235/publications.pdf

Version: 2024-02-01

		13099	1	11939
181	18,844	68		134
papers	citations	h-index		g-index
191	191	191		7228
191	191	191		1220
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Heat flow from the Earth's interior: Analysis of the global data set. Reviews of Geophysics, 1993, 31, 267.	23.0	1,286
2	In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science, 2004, 306, 1709-1714.	12.6	845
3	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
4	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
5	The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science, 2004, 306, 1698-1703.	12.6	507
6	Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 2005, 240, 95-121.	4.4	506
7	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	404
8	Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover. Science, 2004, 306, 1733-1739.	12.6	370
9	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
10	An integrated view of the chemistry and mineralogy of martian soils. Nature, 2005, 436, 49-54.	27.8	348
11	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
12	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
13	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
14	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
15	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
16	Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 2000, 105, 1721-1755.	3.3	274
17	Windâ€driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado―and surroundings at Gusev Crater. Journal of Geophysical Research, 2008, 113, .	3.3	255
18	Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. Journal of Geophysical Research, 2003, 108, .	3.3	247

#	Article	lF	Citations
19	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
20	Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater. Science, 2004, 305, 842-845.	12.6	244
21	Results from the Mars Pathfinder Camera. Science, 1997, 278, 1758-1765.	12.6	242
22	Isotope Ratios of H, C, and O in CO $\langle sub \rangle 2 \langle sub \rangle$ and H $\langle sub \rangle 2 \langle sub \rangle$ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	12.6	241
23	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
24	Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. Journal of Geophysical Research, 2006, 111 , n/a - n/a .	3.3	227
25	Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 1999, 104, 8679-8715.	3.3	226
26	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
27	Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1991-2016.	3.6	214
28	Two Years at Meridiani Planum: Results from the Opportunity Rover. Science, 2006, 313, 1403-1407.	12.6	188
29	Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science, 2012, 336, 570-576.	12.6	176
30	Pyroclastic Activity at Home Plate in Gusev Crater, Mars. Science, 2007, 316, 738-742.	12.6	174
31	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	7.1	172
32	Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover. Science, 2004, 305, 837-842.	12.6	168
33	Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater. Science, 2004, 305, 821-824.	12.6	166
34	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
35	Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	155
36	Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site. Science, 2004, 306, 1723-1726.	12.6	153

#	Article	IF	Citations
37	Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater. Science, 2004, 305, 800-806.	12.6	153
38	Dust devil vortices seen by the Mars Pathfinder Camera. Geophysical Research Letters, 1999, 26, 2781-2784.	4.0	152
39	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
40	Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum. Science, 2004, 306, 1727-1730.	12.6	146
41	Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	144
42	Exploration of Victoria Crater by the Mars Rover Opportunity. Science, 2009, 324, 1058-1061.	12.6	141
43	Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science, 2004, 306, 1703-1709.	12.6	135
44	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
45	ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.	3.0	134
46	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
47	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	12.6	130
48	Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 2008, 113 , .	3.3	129
49	Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 2010, 115, .	3.3	127
50	Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 1999, 104, 8523-8553.	3.3	121
51	The rocks of Gusev Crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	115
52	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	4.0	110
53	Lightâ€toned salty soils and coexisting Siâ€rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research, 2008, 113, .	3.3	108
54	Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 2011, 116, .	3.3	106

#	Article	IF	CITATIONS
55	Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 2008, 113, .	3.3	99
56	The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars. lcarus, 2015, 249, 93-107.	2.5	95
57	Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017, 122, 2510-2543.	3.6	95
58	Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars. Science, 2004, 305, 810-813.	12.6	94
59	Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus, 2010, 205, 375-395.	2.5	93
60	Mineralogic constraints on sulfurâ€rich soils from Pancam spectra at Gusev crater, Mars. Geophysical Research Letters, 2007, 34, .	4.0	89
61	Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 2017, 44, 4716-4724.	4.0	87
62	Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars. Geology, 2006, 34, 1085.	4.4	84
63	Remote sensing of potential lunar resources: 1. Nearâ€side compositional properties. Journal of Geophysical Research, 1991, 96, 18861-18882.	3.3	77
64	The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews, 2021, 217, 24.	8.1	76
65	Imager for Mars Pathfinder (IMP) image calibration. Journal of Geophysical Research, 1999, 104, 8907-8925.	3.3	75
66	Soil grain analyses at Meridiani Planum, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	75
67	Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 2008, 113, .	3.3	75
68	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€like worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	3.6	72
69	Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 1999, 104, 8809-8830.	3.3	71
70	Hydrothermal origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research, 2008, 113, .	3.3	71
71	ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 2015, 249, 74-92.	2.5	70
72	Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006527.	3.6	69

#	Article	IF	Citations
73	Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophysical Research, 2006, 111, n/a - n/a .	3.3	68
74	Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	67
75	Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets. Journal of Geophysical Research, 2007, 112, .	3.3	67
76	Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. Space Science Reviews, 2020, 216, 1.	8.1	67
77	Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	64
78	Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus, 2003, 163, 330-346.	2.5	63
79	Hydrogen detection with ChemCam at Gale crater. Icarus, 2015, 249, 43-61.	2.5	58
80	Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	57
81	Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 2007, 112, .	3.3	56
82	Mars Oxygen ISRU Experiment (MOXIE). Space Science Reviews, 2021, 217, 1.	8.1	56
83	High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars. American Mineralogist, 2016, 101, 1389-1405.	1.9	55
84	Infrared Measurements of Pristine and Disturbed Soils 1. Spectral Contrast Differences between Field and Laboratory Data. Remote Sensing of Environment, 1998, 64, 34-46.	11.0	54
85	The color of the Martian sky and its influence on the illumination of the Martian surface. Journal of Geophysical Research, 1999, 104, 8795-8808.	3.3	54
86	Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars. Journal of Geophysical Research, 2002, 107, 2-1.	3.3	52
87	Visible/near-infrared spectra of experimentally shocked plagioclase feldspars. Journal of Geophysical Research, 2003, 108, .	3.3	52
88	Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.	3.6	51
89	Remote sensing of potential lunar resources: 2. High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2content. Journal of Geophysical Research, 1994, 99, 5601.	3.3	50
90	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	49

#	Article	IF	Citations
91	Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets. Earth and Space Science, 2015, 2, 144-172.	2.6	49
92	Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus, 2015, 251, 275-290.	2.5	49
93	Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration. Earth and Planetary Science Letters, 2009, 281, 258-266.	4.4	48
94	Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research E: Planets, 2014, 119, 2109-2131.	3.6	48
95	Infrared Measurements of Pristine and Disturbed Soils 2. Environmental Effects and Field Data Reduction. Remote Sensing of Environment, 1998, 64, 47-52.	11.0	46
96	Estimated solar wind-implanted helium-3 distribution on the Moon. Geophysical Research Letters, 1999, 26, 385-388.	4.0	46
97	Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars. American Mineralogist, 2003, 88, 1575-1582.	1.9	45
98	SuperCam Calibration Targets: Design and Development. Space Science Reviews, 2020, 216, 138.	8.1	44
99	Spectrogoniometry and modeling of martian and lunar analog samples and Apollo soils. Icarus, 2013, 223, 383-406.	2.5	43
100	Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater. Journal of Geophysical Research E: Planets, 2014, 119, 1322-1344.	3.6	43
101	Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars. American Mineralogist, 2017, 102, 1202-1217.	1.9	43
102	A reevaluation of spectral ratios for Lunar Mare TiO ₂ mapping. Geophysical Research Letters, 1991, 18, 2153-2156.	4.0	42
103	Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts. Geophysical Research Letters, 2001, 28, 2101-2104.	4.0	42
104	First in situ investigation of a dark wind streak on Mars. Journal of Geophysical Research, 2008, 113, .	3.3	42
105	Gone with the wind: Eolian erasure of the Mars Rover tracks. Journal of Geophysical Research, 2010, 115, .	3.3	40
106	Visible/nearâ€infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2655-2684.	3.6	40
107	Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.	4.0	40
108	Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions. Journal of Geophysical Research, 2008, 113, .	3.3	39

#	Article	IF	Citations
109	Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 2018, 307, 294-326.	2.5	39
110	Hematite spherules at Meridiani: Results from MI, Miniâ€₹ES, and Pancam. Journal of Geophysical Research, 2008, 113, .	3.3	38
111	Surface albedo observations at Gusev Crater and Meridiani Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	37
112	Rock spectral classes observed by the Spirit Rover's Pancam on the Gusev Crater Plains and in the Columbia Hills. Journal of Geophysical Research, 2008, 113, .	3.3	37
113	Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater. Journal of Geophysical Research E: Planets, 2015, 120, 538-569.	3.6	37
114	Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions. Journal of Geophysical Research, 1999, 104, 8869-8887.	3.3	36
115	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. Journal of Geophysical Research, 2006, 111 , n/a - n/a .	3.3	36
116	Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars. Icarus, 2018, 311, 69-86.	2.5	34
117	Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006322.	3.6	33
118	Oxalate minerals on Mars?. Earth and Planetary Science Letters, 2015, 420, 127-139.	4.4	32
119	Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 338-352.	3.6	32
120	Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	31
121	Overview of the magnetic properties experiments on the Mars Exploration Rovers. Journal of Geophysical Research, 2009, 114 , .	3.3	31
122	Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater, Mars. American Mineralogist, 2016, 101, 1501-1514.	1.9	31
123	Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Science Reviews, 2021, 217, 29.	8.1	31
124	The 1999 Marsokhod rover mission simulation at Silver Lake, California: Mission overview, data sets, and summary of results. Journal of Geophysical Research, 2001, 106, 7639-7663.	3.3	30
125	Analyses of Highâ€Iron Sedimentary Bedrock and Diagenetic Features Observed With ChemCam at Vera Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006314.	3.6	30
126	Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006299.	3.6	30

#	Article	IF	Citations
127	Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. Journal of Geophysical Research, 2007, 112, .	3.3	29
128	Bedrock formation at Meridiani Planum. Nature, 2006, 443, E1-E2.	27.8	28
129	Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, $2011,116,.$	3.3	28
130	Thermal infrared spectra of experimentally shocked andesine anorthosite. Icarus, 2012, 221, 359-364.	2.5	27
131	Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006294.	3.6	27
132	Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Science Reviews, 2020, 216, 1.	8.1	27
133	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	27
134	Low Abundance Materials at the Mars Pathfinder Landing Site: An Investigation Using Spectral Mixture Analysis and Related Techniques. Icarus, 2002, 158, 56-71.	2.5	25
135	VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers. American Mineralogist, 2016, 101, 2005-2019.	1.9	25
136	Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks. Icarus, 2004, 171, 546-556.	2.5	24
137	Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. Journal of Geophysical Research, 2011, 116, .	3.3	24
138	Microspectroscopic and Petrographic Comparison of Experimentally Shocked Albite, Andesine, and Bytownite. Journal of Geophysical Research E: Planets, 2018, 123, 1701-1722.	3.6	24
139	VNIR multispectral observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover's Pancam. Icarus, 2013, 225, 709-725.	2.5	23
140	Thermal infrared spectroscopy and modeling of experimentally shocked basalts. American Mineralogist, 2007, 92, 1148-1157.	1.9	21
141	Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006290.	3.6	20
142	Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test. Journal of Geophysical Research, 2001, 106, 7683-7711.	3.3	19
143	Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars. Icarus, 2006, 180, 60-74.	2.5	19
144	Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars. Journal of Geophysical Research, $2010,115,115$	3.3	19

#	Article	lF	CITATIONS
145	Temporal observations of bright soil exposures at Gusev crater, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	19
146	Observations of rock spectral classes by the Opportunity rover's Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2349-2369.	3.6	19
147	New views of the Moon: Improved understanding through data integration. Eos, 2000, 81, 349.	0.1	18
148	Bagnold Dunes Campaign Phase 2: Visible/Nearâ€Infrared Reflectance Spectroscopy of Longitudinal Ripple Sands. Geophysical Research Letters, 2018, 45, 9480-9487.	4.0	17
149	Overview of the Morphology and Chemistry of Diagenetic Features in the Clayâ€Rich Glen Torridon Unit of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	17
150	Lunar Prospector epithermal neutrons from impact craters and landing sites: Implications for surface maturity and hydrogen distribution. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	14
151	Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 2010, 115 , .	3.3	14
152	Techniques for identifying dust devils in Mars Pathfinder images. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 870-876.	6.3	13
153	Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment. Journal of Geophysical Research, 2001, 106, 7713-7720.	3.3	12
154	Mars Exploration Rover Navigation Camera inâ€flight calibration. Journal of Geophysical Research, 2008, 113, .	3.3	12
155	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500–1525. Icarus, 2015, 248, 25-71.	2.5	12
156	Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars. Icarus, 2017, 289, 144-156.	2.5	12
157	Surface Property Variations in Venusian Fluidized Ejecta Blanket Craters. Icarus, 1994, 110, 33-70.	2.5	11
158	Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum., 0,, 281-314.		11
159	The albedo of Mars: Six Mars years of observations from Pancam on the Mars Exploration Rovers and comparisons to MOC, CTX and HiRISE. Icarus, 2018, 314, 159-174.	2.5	10
160	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 4. Final mission observations. Icarus, 2021, 357, 114261.	2.5	10
161	Digital mapping of the Mars Pathfinder landing site: Design, acquisition, and derivation of cartographic products for science applications. Journal of Geophysical Research, 1999, 104, 8853-8868.	3.3	9
162	Variability of diffusion of argon in albite, pyroxene, and olivine in shocked and unshocked samples. Geochimica Et Cosmochimica Acta, 2012, 77, 546-560.	3.9	9

#	Article	IF	CITATIONS
163	Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater. Science, 2004, 305, 842-845.	12.6	9
164	Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. Analytica Chimica Acta, 2022, 1209, 339837.	5.4	9
165	Physical properties of the Martian surface from spectrophotometric observations. , 0, , 428-450.		8
166	Photometric characterization of Lucideon and Avian Technologies color standards including application for calibration of the Mastcam-Z instrument on the Mars 2020 rover. Optical Engineering, 2019, 58, 1.	1.0	8
167	Visible and nearâ€infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum. Journal of Geophysical Research, 2010, 115, .	3.3	7
168	Raman and Infrared Microspectroscopy of Experimentally Shocked Basalts. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006240.	3.6	7
169	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	12.6	7
170	Multispectral imaging from Mars Pathfinder. , 0, , 263-280.		6
171	The bidirectional and directional hemispheric reflectance of Apollo 11 and 16 soils: Laboratory and Diviner measurements. Icarus, 2020, 336, 113456.	2.5	6
172	Unconventional high-pressure Raman spectroscopy study of kinetic and peak pressure effects in plagioclase feldspars. Physics and Chemistry of Minerals, 2020, 47, 1.	0.8	6
173	Spectrophotometry from Mars Hand Lens Imager goniometer measurements: Kimberley region, Gale crater. Icarus, 2020, 335, 113361.	2.5	5
174	Modeling of fluidized ejecta emplacement over digital topography on Venus. Journal of Geophysical Research, 1996, 101, 4673-4682.	3.3	4
175	Derivation of optical constants for nanophase hematite and application to modeled abundances from in-situ Martian reflectance spectra. Icarus, 2018, 300, 167-173.	2.5	4
176	Overview of Spirit Microscopic Imager Results. Journal of Geophysical Research E: Planets, 2019, 124, 528-584.	3.6	4
177	Identifying Shocked Feldspar on Mars Using Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on Returned Samples. Earth, Moon and Planets, 2022, 126, .	0.6	4
178	Evaluation of the sensitivity of reflectance ratios to mafic minerals in the lunar regolith. Geophysical Research Letters, 1991, 18, 2149-2152.	4.0	3
179	Compositional and Mineralogic Analyses of Mars Using Multispectral Imaging on the Mars Exploration Rover, Phoenix, and Mars Science Laboratory Missions. , 2019, , 513-537.		3
180	Elemental Analyses of Mars from Rovers with Laser-Induced Breakdown Spectroscopy by ChemCam and SuperCam., 2019,, 573-587.		0

ARTICLE IF CITATIONS

181 The Value of Participating Scientist Programs to NASA's Planetary Science Division., 2021, 53, . o