Peter Dürre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070104/publications.pdf

Version: 2024-02-01

75 papers

5,013 citations

32 h-index 95083 68 g-index

81 all docs

81 docs citations

81 times ranked 3720 citing authors

#	Article	IF	CITATIONS
1	Biobutanol: An attractive biofuel. Biotechnology Journal, 2007, 2, 1525-1534.	1.8	808
2	<i>Clostridium ljungdahlii</i> represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13087-13092.	3.3	594
3	<i>Fermentative Butanol Production</i> <io>Annals of the New York Academy of Sciences, 2008, 1125, 353-362.</io>	1.8	278
4	Pathway engineering and synthetic biology using acetogens. FEBS Letters, 2012, 586, 2191-2198.	1.3	225
5	Energy Conservation Associated with Ethanol Formation from H ₂ and CO ₂ in Clostridium autoethanogenum Involving Electron Bifurcation. Journal of Bacteriology, 2015, 197, 2965-2980.	1.0	198
6	C1-carbon sources for chemical and fuel production by microbial gas fermentation. Current Opinion in Biotechnology, 2015, 35, 63-72.	3.3	193
7	Bacterial synthesis gas (syngas) fermentation. Environmental Technology (United Kingdom), 2013, 34, 1639-1651.	1.2	187
8	Fermentative production of butanolâ€"the academic perspective. Current Opinion in Biotechnology, 2011, 22, 331-336.	3.3	144
9	Using gas mixtures of CO, CO ₂ and H ₂ as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale. Microbial Biotechnology, 2018, 11, 606-625.	2.0	126
10	Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Journal of Biotechnology, 2014, 178, 67-72.	1.9	119
11	Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2 + H 2 Fermentation. Advances in Applied Microbiology, 2018, 103, 143-221.	1.3	118
12	Acetone production with metabolically engineered strains of Acetobacterium woodii. Metabolic Engineering, 2016, 36, 37-47.	3.6	111
13	Cytochrome P450 monooxygenase from Clostridium acetobutylicum: A new α-fatty acid hydroxylase. Biochemical and Biophysical Research Communications, 2007, 362, 114-119.	1.0	101
14	Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Frontiers in Microbiology, 2016, 7, 1036.	1.5	85
15	Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnology for Biofuels, 2019, 12, 167.	6.2	84
16	Genome-Wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology, 2011, 20, 1-15.	1.0	82
17	Physiology and Sporulation in <i>Clostridium</i> . Microbiology Spectrum, 2014, 2, TBS-0010-2012.	1.2	80
18	Butanol fermentation. Environmental Technology (United Kingdom), 2013, 34, 1691-1710.	1.2	78

#	Article	IF	CITATIONS
19	The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens. MBio, 2015, 6, e01168-15.	1.8	75
20	Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe, 2004, 10, 69-74.	1.0	71
21	Clostridium difficile Is an Autotrophic Bacterial Pathogen. PLoS ONE, 2013, 8, e62157.	1.1	70
22	Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnology for Biofuels, 2018, 11, 89.	6.2	67
23	Control of Butanol Formation in Clostridium acetobutylicum by Transcriptional Activation. Journal of Bacteriology, 2002, 184, 1966-1973.	1.0	66
24	Microbial solvent formation revisited by comparative genome analysis. Biotechnology for Biofuels, 2017, 10, 58.	6.2	60
25	Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia. Applied Energy, 2016, 169, 210-217.	5.1	55
26	Characterization and Development of Two Reporter Gene Systems for Clostridium acetobutylicum. Applied and Environmental Microbiology, 2004, 70, 798-803.	1.4	52
27	Butanol formation from gaseous substrates. FEMS Microbiology Letters, 2016, 363, fnw040.	0.7	51
28	Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiology Letters, 1995, 125, 115-120.	0.7	50
29	Gas fermentation for commodity chemicals and fuels. Microbial Biotechnology, 2017, 10, 1167-1170.	2.0	47
30	Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis, 2002, 23, 110.	1.3	46
31	Anaerobic Production of Poly(3-hydroxybutyrate) and Its Precursor 3-Hydroxybutyrate from Synthesis Gas by Autotrophic Clostridia. Biomacromolecules, 2019, 20, 3271-3282.	2.6	46
32	Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum. Biotechnology for Biofuels, 2021, 14, 117.	6.2	36
33	Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing. Applied Microbiology and Biotechnology, 2018, 102, 5419-5425.	1.7	34
34	Syngas Biorefinery and Syngas Utilization. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 247-280.	0.6	31
35	Formation of Solvents in Clostridia. , 2005, , 671-693.		30
36	Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography. Analytical Biochemistry, 1982, 123, 32-40.	1.1	28

#	Article	IF	Citations
37	Plasmid Transfer into the Homoacetogen <i>Acetobacterium woodii</i> by Electroporation and Conjugation. Applied and Environmental Microbiology, 1994, 60, 1033-1037.	1.4	28
38	Complete Genome Sequence of the Type Strain of the Acetogenic Bacterium Moorella thermoacetica DSM 521 ^T . Genome Announcements, 2015, 3, .	0.8	25
39	Gas fermentation – a biotechnological solution for today's challenges. Microbial Biotechnology, 2017, 10, 14-16.	2.0	23
40	Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii. Applied Microbiology and Biotechnology, 2020, 104, 687-699.	1.7	23
41	Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microbial Cell Factories, 2015, 14, 199.	1.9	21
42	Complete Genome Sequence of the Acetogenic Bacterium Moorella thermoacetica DSM 2955 ^T . Genome Announcements, 2015, 3, .	0.8	21
43	Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microbial Cell Factories, 2015, 14, 3.	1.9	21
44	Riboswitch (T-box)-mediated Control of tRNA-dependent Amidation in Clostridium acetobutylicum Rationalizes Gene and Pathway Redundancy for Asparagine and Asparaginyl-tRNAAsn Synthesis. Journal of Biological Chemistry, 2012, 287, 20382-20394.	1.6	18
45	Genome Sequence of the Caproic Acid-Producing Bacterium Caproiciproducens galactitolivorans BS-1 ^T (JCM 30532). Microbiology Resource Announcements, 2019, 8, .	0.3	18
46	Engineering <i>Acetobacterium woodii</i> for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnology Journal, 2022, 17, e2100515.	1.8	18
47	Ancestral sporulation initiation. Molecular Microbiology, 2011, 80, 584-587.	1.2	17
48	Genome Sequence of the Acetogenic Bacterium Oxobacter pfennigii DSM 3222 <code>^T</code> . Genome Announcements, 2015, 3, .	0.8	17
49	Autotrophic lactate production from H2 + CO2 using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains. Applied Microbiology and Biotechnology, 2022, 106, 1447-1458.	1.7	17
50	Applied Acetone-Butanol Fermentation. , 2005, , 125-168.		15
51	Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors. Microbial Biotechnology, 2015, 8, 865-873.	2.0	14
52	Genome sequence of Clostridium sporogenes DSM 795T, an amino acid-degrading, nontoxic surrogate of neurotoxin-producing Clostridium botulinum. Standards in Genomic Sciences, 2015, 10, 40.	1.5	13
53	Genome Sequence of the Acetogenic Bacterium <i>Butyribacterium methylotrophicum </i> DSM 3468 ^T . Genome Announcements, 2016, 4, .	0.8	13
54	Genome Sequence of the Acetogenic Bacterium Acetobacterium wieringae DSM 1911 <code>^T</code> . Genome Announcements, 2016, 4, .	0.8	12

#	Article	IF	CITATIONS
55	Complete Genome Sequence of the Autotrophic Acetogen Clostridium formicaceticum DSM 92 T</sup> Using Nanopore and Illumina Sequencing Data. Genome Announcements">Genome Announcements , 2017, 5, .	0.8	12
56	Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica. Frontiers in Microbiology, 2019, 10, 3070.	1.5	12
57	Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria. Metabolic Engineering, 2021, 66, 296-307.	3.6	12
58	Complete Genome Sequence of Rnf- and Cytochrome-Containing Autotrophic Acetogen Clostridium aceticum DSM 1496. Genome Announcements, 2015, 3, .	0.8	11
59	Establishment of Green- and Red-Fluorescent Reporter Proteins Based on the Fluorescence-Activating and Absorption-Shifting Tag for Use in Acetogenic and Solventogenic Anaerobes. ACS Synthetic Biology, 2022, 11, 953-967.	1.9	11
60	Identifying and Engineering Bottlenecks of Autotrophic Isobutanol Formation in Recombinant C. ljungdahlii by Systemic Analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647853.	2.0	10
61	Genome sequence analysis of the temperate bacteriophage TBP2 of the solvent producer Clostridium saccharoperbutylacetonicum N1-4 (HMT, ATCC 27021). FEMS Microbiology Letters, 2020, 367, .	0.7	7
62	Draft Genome Sequence of Purine-Degrading Clostridium cylindrosporum HC-1 (DSM 605). Genome Announcements, 2015, 3, .	0.8	6
63	Cap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism. MBio, 2016, 7, .	1.8	6
64	Draft Genome Sequence of the Strict Anaerobe Clostridium neopropionicum X4 (DSM 3847 T). Genome Announcements, 2016, 4, .	0.8	6
65	Physiology and Sporulation in <i>Clostridium</i> , 0, , 313-329.		5
66	Draft Genome Sequence of Purine-Degrading Gottschalkia purinilyticum (Formerly Clostridium) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 30
67	Draft Genome Sequence of the Strict Anaerobe Clostridium homopropionicum LuHBu1 (DSM 5847). Genome Announcements, 2015, 3, .	0.8	4
68	Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars. Applied and Environmental Microbiology, 2022, , e0241921.	1.4	3
69	Genome Sequence of the Poly-3-Hydroxybutyrate Producer Clostridium acetireducens DSM 10703. Genome Announcements, 2016, 4, .	0.8	2
70	Genome sequencing and description of Oerskovia enterophila VJag, an agar- and cellulose-degrading bacterium. Standards in Genomic Sciences, 2017, 12, 30.	1.5	2
71	Genome Sequence of the Facultative Anaerobe Oerskovia enterophila DFA-19 (DSM 43852 ^T) Tj ETQo	d.\$ 0.784	1314 rgBT /(
72	Clostridium., 2015,, 467-486.		1

Peter Dürre

#	Article	IF	CITATIONS
73	Genome Sequence of Enterococcus faecalis Strain CG_E. Genome Announcements, 2017, 5, .	0.8	0
74	Genome Sequence of Lactobacillus sunkii Strain CG_D. Genome Announcements, 2017, 5, .	0.8	0
75	Biokatalytische Konversion. , 2020, , 99-119.		O