Juan de Dios GarcÃ-a LÃ³pez-DurÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5070061/publications.pdf

Version: 2024-02-01

Juan de Dios GarcÃa

#	Article	IF	CITATIONS
1	Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths. Rheologica Acta, 2004, 44, 94-103.	2.4	84
2	Colloids on the Frontier of Ferrofluids. Rheological Properties. Langmuir, 2012, 28, 6232-6245.	3.5	84
3	New magnetorheological fluids based on magnetic fibers. Journal of Materials Chemistry, 2007, 17, 3839.	6.7	71
4	Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions. Soft Matter, 2009, 5, 3888.	2.7	66
5	Preparation and Characterization of Iron-Based Magnetorheological Fluids Stabilized by Addition of Organoclay Particles. Langmuir, 2008, 24, 7076-7084.	3.5	64
6	Effect of the hydration on the biomechanical properties in a fibrinâ€agarose tissueâ€like model. Journal of Biomedical Materials Research - Part A, 2014, 102, 2573-2582.	4.0	63
7	Biocompatible magnetic core–shell nanocomposites for engineered magnetic tissues. Nanoscale, 2016, 8, 8138-8150.	5.6	56
8	In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103619.	3.1	51
9	Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials. PLoS ONE, 2015, 10, e0133878.	2.5	50
10	Steric repulsion as a way to achieve the required stability for the preparation of ionic liquid-based ferrofluids. Journal of Colloid and Interface Science, 2011, 357, 252-254.	9.4	48
11	Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses. Journal of Rheology, 2010, 54, 1119-1136.	2.6	47
12	Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength. Materials Chemistry Frontiers, 2018, 2, 686-699.	5.9	46
13	Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. Journal of Physics Condensed Matter, 2011, 23, 455101.	1.8	37
14	Yield stress in magnetorheological suspensions near the limit of maximum-packing fraction. Journal of Rheology, 2012, 56, 1209.	2.6	36
15	Rheology of magnetic alginate hydrogels. Journal of Rheology, 2018, 62, 1083-1096.	2.6	35
16	Effect of polar interactions on the magnetorheology of silica-coated magnetite suspensions in oil media. Journal of Colloid and Interface Science, 2009, 337, 254-259.	9.4	26
17	A rheological approach to the stability of humic acid/clay colloidal suspensions. Rheologica Acta, 2003, 42, 148-157.	2.4	25
18	In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111476.	7.3	23

JUAN DE DIOS GARCÃA

#	Article	IF	CITATIONS
19	Anisotropic magnetic hydrogels: design, structure and mechanical properties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180217.	3.4	22
20	Effect of gap thickness on the viscoelasticity of magnetorheological fluids. Journal of Applied Physics, 2010, 108, 083503.	2.5	18
21	Wall slip phenomena in concentrated ionic liquid-based magnetorheological fluids. Rheologica Acta, 2012, 51, 793-803.	2.4	18
22	Optimizing the Magnetic Response of Suspensions by Tailoring the Spatial Distribution of the Particle Magnetic Material. ACS Applied Materials & Interfaces, 2013, 5, 12143-12147.	8.0	18
23	Mechanical properties of magnetic gels containing rod-like composite particles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180218.	3.4	16
24	Cryopreservation of an artificial human oral mucosa stroma. A viability and rheological study. Cryobiology, 2013, 67, 355-362.	0.7	13
25	Stick–slip instabilities in the shear flow of magnetorheological suspensions. Journal of Rheology, 2013, 57, 1101-1119.	2.6	12
26	Steady state rheological behaviour of multi-component magnetic suspensions. Soft Matter, 2013, 9, 5726.	2.7	12
27	Role of particle clusters on the rheology of magneto-polymer fluids and gels. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190254.	3.4	6
28	Assessment of surfactant adsorption in oil-based magnetic colloids. Adsorption, 2010, 16, 215-221.	3.0	4
29	Rheology of magnetic colloids containing clusters of particle platelets and polymer nanofibres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190255.	3.4	4
30	The role of thermal diffusion, particle clusters, hydrodynamic and magnetic forces on the flow behaviour of magneto-polymer composites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200302.	3.4	1