
Kristen DeAngelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5069714/publications.pdf Version: 2024-02-01

KDISTEN DEANCELIS

#	Article	IF	CITATIONS
1	Draft Genome Sequence of Leifsonia poae Strain BS71, Isolated from a Drought Microcosm. Microbiology Resource Announcements, 2022, 11, e0095121.	0.6	1
2	A framework for integrating microbial dispersal modes into soil ecosystem ecology. IScience, 2022, 25, 103887.	4.1	25
3	Sodalis ligni Strain 159R Isolated from an Anaerobic Lignin-Degrading Consortium. Microbiology Spectrum, 2022, 10, e0234621.	3.0	1
4	Evidence for a genetic basis in functional trait tradeoffs with microbial growth rate but not growth yield. Soil Biology and Biochemistry, 2022, 172, 108765.	8.8	0
5	Soil aggregate-mediated microbial responses to long-term warming. Soil Biology and Biochemistry, 2021, 152, 108055.	8.8	30
6	Fungal community response to longâ€ŧerm soil warming with potential implications for soil carbon dynamics. Ecosphere, 2021, 12, e03460.	2.2	17
7	The Transcriptional Response of Soil Bacteria to Long-Term Warming and Short-Term Seasonal Fluctuations in a Terrestrial Forest. Frontiers in Microbiology, 2021, 12, 666558.	3.5	8
8	Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice. MSystems, 2021, 6, e0047121.	3.8	45
9	Physical protection regulates microbial thermal responses to chronic soil warming. Soil Biology and Biochemistry, 2021, 159, 108298.	8.8	5
10	Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence. ISME Communications, 2021, 1, .	4.2	48
11	Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1. PLoS ONE, 2020, 15, e0233823.	2.5	8
12	Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 2020, 11, 3684.	12.8	217
13	Genome Sequences of Frankineae sp. Strain MT45 and Jatrophihabitans sp. Strain GAS493, Two Actinobacteria Isolated from Forest Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	1
14	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
15	Carbon Use Efficiency and Its Temperature Sensitivity Covary in Soil Bacteria. MBio, 2020, 11, .	4.1	52
16	Heavy and wet: The consequences of violating assumptions of measuring soil microbial growth efficiency using the 180 water method. Elementa, 2020, 8, .	3.2	5
17	Draft Genome Sequence of a Terrestrial Planctomycete, <i>Singulisphaera</i> sp. Strain GP187, Isolated from Forest Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	2

2

KRISTEN DEANGELIS

#	Article	IF	CITATIONS
19	Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1. , 2020, 15, e0233823.		0
20	Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1. , 2020, 15, e0233823.		0
21	Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1. , 2020, 15, e0233823.		Ο
22	High proportions of bacteria and archaea across most biomes remain uncultured. ISME Journal, 2019, 13, 3126-3130.	9.8	264
23	Draft Genome Sequence of Acidobacteria Group 1 Acidipila sp. Strain EB88, Isolated from Forest Soil. Microbiology Resource Announcements, 2019, 8, .	0.6	10
24	Complete Genome Sequence of Serratia quinivorans Strain 124R, a Facultative Anaerobe Isolated on Organosolv Lignin as a Sole Carbon Source. Microbiology Resource Announcements, 2019, 8, .	0.6	1
25	Microbial responses to experimental soil warming: Five testable hypotheses. , 2019, , 141-156.		1
26	Metabolic tradeoffs and heterogeneity in microbial responses to temperature determine the fate of litter carbon in simulations of a warmer world. Biogeosciences, 2019, 16, 4875-4888.	3.3	4
27	Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 2018, 24, 895-905.	9.5	61
28	Genome Sequence of <i>Verrucomicrobium</i> sp. Strain GAS474, a Novel Bacterium Isolated from Soil. Genome Announcements, 2018, 6, .	0.8	6
29	Draft Genome Sequences of Three Strains of a Novel Rhizobiales Species Isolated from Forest Soil. Genome Announcements, 2018, 6, .	0.8	2
30	High-Quality Draft Genome Sequences of Four Lignocellulose-Degrading Bacteria Isolated from Puerto Rican Forest Soil: <i>Gordonia</i> sp., <i>Paenibacillus</i> sp., <i>Variovorax</i> sp., and <i>Vogesella</i> sp. Genome Announcements, 2017, 5, .	0.8	18
31	Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia. Trends in Microbiology, 2017, 25, 788-796.	7.7	59
32	Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biology and Biochemistry, 2017, 110, 68-78.	8.8	73
33	Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358, 101-105.	12.6	548
34	Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium. PLoS ONE, 2017, 12, e0186440.	2.5	20
35	Chemical communication connects soil food webs. Soil Biology and Biochemistry, 2016, 102, 48-51.	8.8	19
36	Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils. Applied and Environmental Microbiology, 2016, 82, 6518-6530.	3.1	68

KRISTEN DEANGELIS

#	Article	IF	CITATIONS
37	Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry, 2016, 130, 177-190.	3.5	48
38	Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov Standards in Genomic Sciences, 2015, 10, 106.	1.5	43
39	Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 2015, 6, 104.	3.5	270
40	Two decades of warming increases diversity of a potentially lignolytic bacterial community. Frontiers in Microbiology, 2015, 6, 480.	3.5	73
41	Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Standards in Genomic Sciences, 2014, 9, 19.	1.5	40
42	Draft Genome Sequence of the Lignin-Degrading <i>Burkholderia</i> sp. Strain LIG30, Isolated from Wet Tropical Forest Soil. Genome Announcements, 2014, 2, .	0.8	26
43	Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 2014, 37, 60-67.	2.8	103
44	Changes in microbial dynamics during long-term decomposition in tropical forests. Soil Biology and Biochemistry, 2013, 66, 60-68.	8.8	47
45	Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle. Diversity, 2013, 5, 409-425.	1.7	31
46	Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Frontiers in Microbiology, 2013, 4, 280.	3.5	92
47	Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron. Standards in Genomic Sciences, 2013, 7, 382-398.	1.5	12
48	Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, <i>Enterobacter lignolyticus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2173-82.	7.1	85
49	Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia. MBio, 2012, 3, .	4.1	19
50	Phylogenetic Clustering of Soil Microbial Communities by 16S rRNA but Not 16S rRNA Genes. Applied and Environmental Microbiology, 2012, 78, 2459-2461.	3.1	28
51	Application of phenotypic microarrays to environmental microbiology. Current Opinion in Biotechnology, 2012, 23, 41-48.	6.6	45
52	PCR Amplification-Independent Methods for Detection of Microbial Communities by the High-Density Microarray PhyloChip. Applied and Environmental Microbiology, 2011, 77, 6313-6322.	3.1	74
53	Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 2011, 480, 368-371.	27.8	601
54	Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil. PLoS ONE, 2011, 6, e19306.	2.5	178

KRISTEN DEANGELIS

#	Article	IF	CITATIONS
55	Complete genome sequence of "Enterobacter lignolyticus―SCF1. Standards in Genomic Sciences, 2011, 5, 69-85.	1.5	76
56	Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77, 600-610.	2.7	316
57	Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities. Bioenergy Research, 2010, 3, 146-158.	3.9	100
58	Microbial communities acclimate to recurring changes in soil redox potential status. Environmental Microbiology, 2010, 12, 3137-3149.	3.8	294
59	Selective progressive response of soil microbial community to wild oat roots. ISME Journal, 2009, 3, 168-178.	9.8	306
60	Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing. Applied and Environmental Microbiology, 2009, 75, 1566-1574.	3.1	125
61	Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiology Ecology, 2008, 66, 197-207.	2.7	126
62	PLANT AND MICROBIAL CONTROLS ON NITROGEN RETENTION AND LOSS IN A HUMID TROPICAL FOREST. Ecology, 2008, 89, 3030-3040.	3.2	146
63	Sensitive Whole-Cell Biosensor Suitable for Detecting a Variety of N -Acyl Homoserine Lactones in Intact Rhizosphere Microbial Communities. Applied and Environmental Microbiology, 2007, 73, 3724-3727.	3.1	37
64	Root Interactions with Soil Microbial Communities and Processes. , 2007, , 1-29.		43
65	Two Novel Bacterial Biosensors for Detection of Nitrate Availability in the Rhizosphere. Applied and Environmental Microbiology, 2005, 71, 8537-8547.	3.1	89