
Maria Svelto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5069466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Inner Mitochondrial Membrane Has Aquaporin-8 Water Channels and Is Highly Permeable to Water. Journal of Biological Chemistry, 2005, 280, 17149-17153.	3.4	194
2	The role of aquaporin-4 in the blood–brain barrier development and integrity: Studies in animal and cell culture models. Neuroscience, 2004, 129, 935-944.	2.3	191
3	Aquaporinâ€4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB Journal, 2001, 15, 90-98.	0.5	178
4	Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia, 2003, 42, 235-251.	4.9	156
5	Minireview: Aquaporin 2 Trafficking. Endocrinology, 2005, 146, 5063-5070.	2.8	152
6	Aquaporinâ€4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia, 2009, 57, 1363-1373.	4.9	143
7	cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. Journal of Cell Science, 2003, 116, 1519-1525.	2.0	127
8	Inhibition of AQP4 expression in astrocytes by RNAi determines alterations in cell morphology, growth, and water transport and induces changes in ischemia related genes. FASEB Journal, 2003, 17, 1-21.	0.5	124
9	Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. European Journal of Cell Biology, 2001, 80, 711-719.	3.6	118
10	Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. American Journal of Physiology - Renal Physiology, 2001, 281, F1092-F1101.	2.7	109
11	A Multidisciplinary Evaluation of the Effectiveness of Cyclosporine A in Dystrophic Mdx Mice. American Journal of Pathology, 2005, 166, 477-489.	3.8	107
12	Tissue Distribution and Membrane Localization of Aquaporin-9 Water Channel. Journal of Histochemistry and Cytochemistry, 2001, 49, 1547-1556.	2.5	104
13	Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Scientific Reports, 2017, 7, 10046.	3.3	99
14	Microvessel overexpression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. British Journal of Haematology, 2001, 113, 415-421.	2.5	97
15	Urinary Aquaporin 2 and Calciuria Correlate with the Severity of Enuresis in Children. Journal of the American Society of Nephrology: JASN, 2000, 11, 1873-1881.	6.1	96
16	Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology, 2003, 38, 947-957.	7.3	95
17	Biophysical assessment of aquaporinâ€9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biology of the Cell, 2012, 104, 342-351.	2.0	93
18	Aquaporins in skeletal muscle: reassessment of the functional role of aquaporinâ€4. FASEB Journal, 2004, 18, 905-907.	0.5	91

#	Article	IF	CITATIONS
19	Aquaporin-8-facilitated mitochondrial ammonia transport. Biochemical and Biophysical Research Communications, 2010, 393, 217-221.	2.1	91
20	The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Clia, 2016, 64, 139-154.	4.9	91
21	Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney International, 2004, 66, 2245-2255.	5.2	90
22	Altered blood–brain barrier development in dystrophic MDX mice. Neuroscience, 2004, 125, 921-935.	2.3	87
23	Activation of TYRO3/AXL Tyrosine Kinase Receptors in Thyroid Cancer. Cancer Research, 2011, 71, 1792-1804.	0.9	87
24	Possible Involvement of Aquaporin-7 and -8 in Rat Testis Development and Spermatogenesis. Biochemical and Biophysical Research Communications, 2001, 288, 619-625.	2.1	86
25	Serâ€256 phosphorylation dynamics of aquaporin 2 during maturation from the endoplasmic reticulum to the vesicular compartment in renal cells. FASEB Journal, 2003, 17, 1-24.	0.5	83
26	Expression and Functional Analysis of Water Channels in a Stably AQP2-transfected Human Collecting Duct Cell Line. Journal of Biological Chemistry, 1996, 271, 24365-24370.	3.4	80
27	Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. , 2000, 31, 29-38.		78
28	Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. Journal of Molecular Medicine, 2013, 91, 1407-1419.	3.9	78
29	Expression and Localization of the Aquaporin-8 Water Channel in Rat Testis1. Biology of Reproduction, 2001, 64, 1660-1666.	2.7	76
30	Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiology of Disease, 2005, 18, 356-365.	4.4	76
31	Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain, 2002, 125, 1510-1521.	7.6	73
32	Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function. Journal of Lipid Research, 2006, 47, 32-41.	4.2	73
33	Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. International Journal of Obesity, 2014, 38, 1213-1220.	3.4	71
34	Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport. Clia, 2017, 65, 790-803.	4.9	70
35	A Heterotrimeric G Protein of the Gi Family Is Required for cAMP-triggered Trafficking of Aquaporin 2 in Kidney Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 22627-22634.	3.4	68
36	Functional involvement of VAMP/synaptobrevin-2 in cAMP-stimulated aquaporin 2 translocation in renal collecting duct cells. Journal of Cell Science, 2002, 115, 3667-3674.	2.0	68

#	Article	IF	CITATIONS
37	Hypotonicity Induces Aquaporin-2 Internalization and Cytosol-to-Membrane Translocation of ICIn in Renal Cells. Endocrinology, 2007, 148, 1118-1130.	2.8	68
38	Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. American Journal of Physiology - Renal Physiology, 2002, 283, F895-F903.	2.7	67
39	Actin remodeling requires ERM function to facilitate AQP2 apical targeting. Journal of Cell Science, 2005, 118, 3623-3630.	2.0	67
40	Actin cytoskeleton remodeling governs aquaporinâ€4 localization in astrocytes. Clia, 2008, 56, 1755-1766.	4.9	65
41	Dystrophinâ€dependent and â€independent AQP4 pools are expressed in the mouse brain. Glia, 2008, 56, 869-876.	4.9	64
42	Aquaporins as Targets for Drug Discovery. Current Pharmaceutical Design, 2007, 13, 2421-2427.	1.9	63
43	Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes. Journal of Neurochemistry, 2007, 100, 87-104.	3.9	63
44	Automated Cell-Based Assay for Screening of Aquaporin Inhibitors. Analytical Chemistry, 2009, 81, 8219-8229.	6.5	62
45	Altered aquaporinâ€4 expression in human muscular dystrophies: a common feature?. FASEB Journal, 2002, 16, 1120-1122.	0.5	61
46	Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. Journal of Neurochemistry, 2008, 105, 2156-2165.	3.9	60
47	Identification of Two Major Conformational Aquaporin-4 Epitopes for Neuromyelitis Optica Autoantibody Binding. Journal of Biological Chemistry, 2011, 286, 9216-9224.	3.4	59
48	Evidences for a Leaky Scanning Mechanism for the Synthesis of the Shorter M23 Protein Isoform of Aquaporin-4. Journal of Biological Chemistry, 2010, 285, 4562-4569.	3.4	58
49	Calcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study. PLoS ONE, 2012, 7, e33145.	2.5	58
50	Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Archiv European Journal of Physiology, 2011, 462, 753-766.	2.8	56
51	Combination of secretin and fluvastatin ameliorates the polyuria associated with X-linked nephrogenic diabetes insipidus in mice. Kidney International, 2014, 86, 127-138.	5.2	56
52	Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. International Journal of Molecular Sciences, 2017, 18, 2385.	4.1	56
53	AQP2 exocytosis in the renal collecting duct – involvement of SNARE isoforms and the regulatory role of Munc18b. Journal of Cell Science, 2008, 121, 2097-2106.	2.0	54
54	Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2011, 43, 678-689.	4.4	53

#	Article	IF	CITATIONS
55	Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma. Journal of Molecular Medicine, 2013, 91, 613-623.	3.9	53
56	Integrin Signaling Modulates AQP2 Trafficking via Arg-Gly-Asp (RGD) Motif. Cellular Physiology and Biochemistry, 2011, 27, 739-748.	1.6	51
57	Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: a biochemical, histological and electrophysiological study. British Journal of Pharmacology, 2006, 149, 909-919.	5.4	50
58	Characterization of Two Novel Missense Mutations in the <i>AQP2 </i> Gene Causing Nephrogenic Diabetes Insipidus. Nephron Physiology, 2007, 105, p33-p41.	1.2	49
59	Selective Decrease in Urinary Aquaporin 2 and Increase in Prostaglandin E2 Excretion Is Associated with Postobstructive Polyuria in Human Congenital Hydronephrosis. Journal of the American Society of Nephrology: JASN, 2004, 15, 2705-2712.	6.1	48
60	Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Biology of the Cell, 2007, 99, 25-36.	2.0	48
61	Effect of microgravity on gene expression in mouse brain. Experimental Brain Research, 2008, 191, 289-300.	1.5	48
62	Higher order structure of aquaporin-4. Neuroscience, 2010, 168, 903-914.	2.3	48
63	AQP5 Is Expressed In Type-B Intercalated Cells in the Collecting Duct System of the Rat, Mouse and Human Kidney. Cellular Physiology and Biochemistry, 2011, 28, 683-692.	1.6	48
64	Liver Glycerol Permeability and Aquaporin-9 Are Dysregulated in a Murine Model of Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2013, 8, e78139.	2.5	48
65	DNA adducts, benzo(a)pyrene monooxygenase activity, and lysosomal membrane stability in Mytilus galloprovincialis from different areas in Taranto coastal waters (Italy). Environmental Research, 2004, 96, 163-175.	7.5	46
66	Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. European Journal of Clinical Investigation, 2008, 38, 1-10.	3.4	46
67	Muscle loading modulates aquaporinâ€4 expression in skeletal muscle. FASEB Journal, 2001, 15, 1282-1284.	0.5	45
68	Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiology of Disease, 2008, 32, 243-253.	4.4	44
69	The K _{ATP} channel is a molecular sensor of atrophy in skeletal muscle. Journal of Physiology, 2010, 588, 773-784.	2.9	44
70	Bradykinin Signaling Counteracts cAMP-Elicited Aquaporin 2 Translocation in Renal Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 2881-2889.	6.1	43
71	Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gallâ€bladder epithelium. Biology of the Cell, 2005, 97, 415-423.	2.0	43
72	Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. American Journal of Physiology - Renal Physiology, 2008, 295, G682-G690.	3.4	43

#	Article	IF	CITATIONS
73	Clinical and Functional Characterization of a Novel Mutation in Lamin A/C Gene in a Multigenerational Family with Arrhythmogenic Cardiac Laminopathy. PLoS ONE, 2015, 10, e0121723.	2.5	43
74	Glio-vascular modifications caused by Aquaporin-4 deletion in the mouse retina. Experimental Eye Research, 2016, 146, 259-268.	2.6	42
75	Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy. Journal of Diabetes Research, 2017, 2017, 1-13.	2.3	42
76	Role of the p66Shc Isoform in Insulin-like Growth Factor I Receptor Signaling through MEK/Erk and Regulation of Actin Cytoskeleton in Rat Myoblasts. Journal of Biological Chemistry, 2004, 279, 43900-43909.	3.4	41
77	Aquaporin 2 and Apical Calcium-Sensing Receptor: New Players in Polyuric Disorders Associated With Hypercalciuria. Seminars in Nephrology, 2008, 28, 297-305.	1.6	39
78	l²3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 533-543.	3.0	39
79	Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney. PLoS ONE, 2016, 11, e0156021.	2.5	39
80	AQP4 Aggregation State Is a Determinant for Glioma Cell Fate. Cancer Research, 2019, 79, 2182-2194.	0.9	39
81	Histamine treatment induces rearrangements of orthogonal arrays of particles (OAPs) in human AQP4-expressing gastric cells. Journal of Cell Biology, 2001, 154, 1235-1244.	5.2	38
82	Aquaporin-4 Autoantibodies in Neuromyelitis Optica: AQP4 Isoform-Dependent Sensitivity and Specificity. PLoS ONE, 2013, 8, e79185.	2.5	38
83	Water permeability of rat liver mitochondria: A biophysical study. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1018-1024.	2.6	36
84	A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability. Molecular Biology of the Cell, 2014, 25, 470-480.	2.1	36
85	Water handling and aquaporins in bile formation: recent advances and research trends. Journal of Hepatology, 2003, 39, 864-874.	3.7	35
86	Role of nuclear Lamin A/C in cardiomyocyte functions. Biology of the Cell, 2014, 106, 346-358.	2.0	35
87	Biomechanical investigation of colorectal cancer cells. Applied Physics Letters, 2014, 105, 123701.	3.3	34
88	β3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney International, 2016, 90, 555-567.	5.2	34
89	Functional involvement of Annexin-2 in cAMP induced AQP2 trafficking. Pflugers Archiv European Journal of Physiology, 2008, 456, 729-736.	2.8	33
90	Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43, 431-445.	2.7	33

#	Article	IF	CITATIONS
91	AQP4-Dependent Water Transport Plays a Functional Role in Exercise-Induced Skeletal Muscle Adaptations. PLoS ONE, 2013, 8, e58712.	2.5	32
92	Glutathionylation of the Aquaporin-2 Water Channel. Journal of Biological Chemistry, 2014, 289, 27807-27813.	3.4	32
93	Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygenâ€induced retinopathy: beneficial effect of the absence of AQP4. Journal of Cellular and Molecular Medicine, 2018, 22, 613-627.	3.6	32
94	D184E mutation in aquaporin-4 gene impairs water permeability and links to deafness. Neuroscience, 2011, 197, 80-88.	2.3	31
95	The cultured human gastric cells HGT-1 express the principal transporters involved in acid secretion. Pflugers Archiv European Journal of Physiology, 2000, 440, 871-880.	2.8	30
96	Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. Journal of Endocrinology, 2007, 192, 111-120.	2.6	30
97	MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Molecular Biology of the Cell, 2010, 21, 3985-3997.	2.1	30
98	Aquaporin Membrane Channels: Biophysics, Classification, Functions, and Possible Biotechnological Applications. Food Biophysics, 2011, 6, 241-249.	3.0	30
99	Analysis by two-dimensional Blue Native/SDS-PACE of membrane protein alterations in rat soleus muscle after hindlimb unloading. European Journal of Applied Physiology, 2010, 110, 1215-1224.	2.5	29
100	A novel therapeutic effect of statins on nephrogenic diabetes insipidus. Journal of Cellular and Molecular Medicine, 2015, 19, 265-282.	3.6	29
101	Polarized traffic towards the cell surface: how to find the route. Biology of the Cell, 2010, 102, 75-91.	2.0	28
102	Excessive Signal Transduction of Gain-of-Function Variants of the Calcium-Sensing Receptor (CaSR) Are Associated with Increased ER to Cytosol Calcium Gradient. PLoS ONE, 2013, 8, e79113.	2.5	28
103	Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death and Disease, 2019, 10, 345.	6.3	28
104	NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension. Pflugers Archiv European Journal of Physiology, 2011, 462, 281-291.	2.8	27
105	Translational regulation mechanisms of aquaporinâ€4 supramolecular organization in astrocytes. Glia, 2011, 59, 1923-1932.	4.9	27
106	In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats. Journal of Hypertension, 2012, 30, 153-167.	0.5	27
107	Role of Lamin A/C Gene Mutations in the Signaling Defects Leading to Cardiomyopathies. Frontiers in Physiology, 2018, 9, 1356.	2.8	27
108	Identification of a Point Mutation Impairing the Binding between Aquaporin-4 and Neuromyelitis Optica Autoantibodies. Journal of Biological Chemistry, 2014, 289, 30578-30589.	3.4	26

#	Article	IF	CITATIONS
109	Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends. International Journal of Molecular Sciences, 2016, 17, 1096.	4.1	26
110	Adult murine CNS stem cells express aquaporin channels. Biology of the Cell, 2006, 98, 89-94.	2.0	25
111	Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells. American Journal of Physiology - Cell Physiology, 2007, 292, C1476-C1484.	4.6	25
112	A Protein Kinase A–Independent Pathway Controlling Aquaporin 2 Trafficking as a Possible Cause for the Syndrome of Inappropriate Antidiuresis Associated with Polycystic Kidney Disease 1 Haploinsufficiency. Journal of the American Society of Nephrology: JASN, 2014, 25, 2241-2253.	6.1	25
113	A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. Journal of Translational Medicine, 2014, 12, 133.	4.4	25
114	Rosiglitazone Promotes AQP2 Plasma Membrane Expression In Renal Cells Via a Ca2+-Dependent/cAMP-Independent Mechanism. Cellular Physiology and Biochemistry, 2015, 35, 1070-1085.	1.6	25
115	Aquaporin-1 expression in the chick embryo chorioallantoic membrane. The Anatomical Record, 2002, 268, 85-89.	1.8	24
116	Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology, 2003, 38, 947-957.	7.3	24
117	Cell culture models and animal models for studying the patho-physiological role of renal aquaporins. Cellular and Molecular Life Sciences, 2012, 69, 1931-1946.	5.4	23
118	High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biology, 2013, 14, 16.	3.0	23
119	AQP1-Containing Exosomes in Peritoneal Dialysis Effluent As Biomarker of Dialysis Efficiency. Cells, 2019, 8, 330.	4.1	23
120	Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling. PLoS ONE, 2011, 6, e19225.	2.5	22
121	siRNA-Chitosan Complexes in Poly(lactic- <i>co</i> -glycolic acid) Nanoparticles for the Silencing of Aquaporin-1 in Cancer Cells. Molecular Pharmaceutics, 2013, 10, 3186-3194.	4.6	22
122	Preparative scale production and functional reconstitution of a human aquaglyceroporin (AQP3) using a cell free expression system. New Biotechnology, 2013, 30, 545-551.	4.4	22
123	Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2+. Journal of Cell Science, 2015, 128, 2350-2360.	2.0	22
124	NKCC2 activity is inhibited by the Bartter's syndrome type 5 gainâ€ofâ€function CaRâ€A843E mutant in renal cells. Biology of the Cell, 2015, 107, 98-110.	2.0	22
125	Inhibiting the urokinaseâ€ŧype plasminogen activator receptor system recovers <scp>STZ</scp> â€induced diabetic nephropathy. Journal of Cellular and Molecular Medicine, 2019, 23, 1034-1049.	3.6	22
126	Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. European Journal of Cell Biology, 2017, 96, 61-69.	3.6	21

#	Article	IF	CITATIONS
127	Aquaporinâ€1 inhibition reduces metastatic formation in a mouse model of melanoma. Journal of Cellular and Molecular Medicine, 2018, 22, 904-912.	3.6	21
128	Aquaporin-4 expression is severely reduced in human sarcoglycanopathies and dysferlinopathies. Cell Cycle, 2008, 7, 2199-2207.	2.6	20
129	News and views on mitochondrial water transport. Frontiers in Bioscience - Landmark, 2009, Volume, 4189.	3.0	20
130	Altered Expression of Renal Aquaporins and Â-Adducin Polymorphisms May Contribute to the Establishment of Salt-Sensitive Hypertension. American Journal of Hypertension, 2011, 24, 822-828.	2.0	20
131	Orthogonal arrays of particle assembly are essential for normal aquaporinâ€4 expression level in the brain. Clia, 2021, 69, 473-488.	4.9	20
132	Co-Regulated Pendrin and Aquaporin 5 Expression and Trafficking in Type-B Intercalated Cells under Potassium Depletion. Cellular Physiology and Biochemistry, 2013, 32, 184-199.	1.6	19
133	Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells. Pflugers Archiv European Journal of Physiology, 2004, 449, 66-75.	2.8	18
134	Conditionally immortalized human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor. American Journal of Physiology - Renal Physiology, 2015, 308, F1200-F1206.	2.7	18
135	Human β3-Adrenoreceptor is Resistant to Agonist-Induced Desensitization in Renal Epithelial Cells. Cellular Physiology and Biochemistry, 2018, 48, 847-862.	1.6	18
136	Role of pericytes in blood–brain barrier preservation during ischemia through tunneling nanotubes. Cell Death and Disease, 2022, 13, .	6.3	16
137	Aquaporin-4 expression during development of the cerebellum. Cerebellum, 2002, 1, 207-212.	2.5	15
138	The expression of Lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca ²⁺ handling. Journal of Cellular and Molecular Medicine, 2016, 20, 2194-2207.	3.6	15
139	Na ⁺ –K ⁺ –2Cl ^{â^'} cotransporter type 2 trafficking and activity: The role of interacting proteins. Biology of the Cell, 2012, 104, 201-212.	2.0	14
140	Supramolecular aggregation of aquaporinâ€4 is different in muscle and brain: correlation with tissue susceptibility in neuromyelitis optica. Journal of Cellular and Molecular Medicine, 2018, 22, 1236-1246.	3.6	14
141	Water Transport into Bile and Role in Bile Formation. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2005, 5, 137-142.	1.8	13
142	Differential Modulation of Intracellular Ca ²⁺ Responses Associated with Calcium-Sensing Receptor Activation in Renal Collecting Duct Cells. Cellular Physiology and Biochemistry, 2010, 26, 901-912.	1.6	13
143	A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells. Cellular Physiology and Biochemistry, 2013, 32, 200-209.	1.6	13
144	Regulation of aquaporinâ€4 expression in the central nervous system investigated using M23â€AQP4 null mouse. Glia, 2021, 69, 2235-2251.	4.9	13

#	Article	IF	CITATIONS
145	Altered urinary excretion of aquaporin 2 in IgA nephropathy. European Journal of Endocrinology, 2011, 165, 657-664.	3.7	12
146	Proâ€inflammatory cytokines as emerging molecular determinants in cardiolaminopathies. Journal of Cellular and Molecular Medicine, 2021, 25, 10902-10915.	3.6	12
147	Altered expression of aquaporin 4 and H+/K+-ATPase in the stomachs of peptide YY (PYY) transgenic mice. Biology of the Cell, 2005, 97, 735-742.	2.0	11
148	Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells. International Journal of Molecular Sciences, 2018, 19, 1112.	4.1	11
149	Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development. Muscle and Nerve, 2007, 35, 625-631.	2.2	10
150	EGF Stimulates ICl _{swell} by a Redistribution of Proteins Involved in Cell Volume Regulation. Cellular Physiology and Biochemistry, 2011, 28, 1191-1202.	1.6	10
151	Identification of moesin as NKCC2â€interacting protein and analysis of its functional role in the NKCC2 apical trafficking. Biology of the Cell, 2012, 104, 658-676.	2.0	10
152	Extracellular GTP is a Potent Water-Transport Regulator via Aquaporin 5 Plasma-Membrane Insertion in M1-CCD Epithelial Cortical Collecting Duct Cells. Cellular Physiology and Biochemistry, 2014, 33, 731-746.	1.6	10
153	Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome. Journal of Cellular and Molecular Medicine, 2019, 23, 6331-6342.	3.6	10
154	Noradrenaline induced secretion of nonelectrolytes through frog skin. Journal of Membrane Biology, 1977, 36, 1-11.	2.1	7
155	Aquaporinâ€2 urinary excretion in preterm infants: relationship to diuresis and vasopressin. Acta Physiologica, 2010, 200, 339-345.	3.8	7
156	Na+/K+-ATPase β1-subunit is recruited in Na-K-2Cl co-transporter isoform 2 multiprotein complexes in rat kidneys. Journal of Hypertension, 2014, 32, 1842-1853.	0.5	7
157	Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection. PLoS ONE, 2015, 10, e0143679.	2.5	7
158	Colchicine inhibition of ADH effect on frog skin permeability. Experientia, 1978, 34, 360-361.	1.2	6
159	Phloretin sensitive active urea absorption in frog skin. Pflugers Archiv European Journal of Physiology, 1982, 394, 226-229.	2.8	6
160	Effect of Roscovitine on Intracellular Calcium Dynamics: Differential Enantioselective Responses. Molecular Pharmaceutics, 2013, 10, 4620-4628.	4.6	6
161	Functional reconstitution of a rice aquaporin water channel, PIP1;1, by a micro-batchwise methodology. Plant Physiology and Biochemistry, 2014, 85, 78-84.	5.8	6
162	New Insights into the CD133 (Prominin-1) Expression in Mouse and Human Colon Cancer Cells. Advances in Experimental Medicine and Biology, 2013, 777, 145-166.	1.6	5

Maria Svelto

#	Article	IF	CITATIONS
163	Aquaporin-1 Facilitates Transmesothelial Water Permeability: In Vitro and Ex Vivo Evidence and Possible Implications in Peritoneal Dialysis. International Journal of Molecular Sciences, 2021, 22, 12535.	4.1	5
164	Double noradrenaline effect on nonelectrolyte permeability explained by α and β receptors stimulation in frog skin. General Pharmacology, 1979, 10, 505-509.	0.7	4
165	Phorbol ester effect on the hydrosmotic response to vasopressin in frog skin. Pflugers Archiv European Journal of Physiology, 1987, 408, 318-320.	2.8	4
166	Aquaporinâ€4 orthogonal arrays of particles from a physiological and pathophysiological point of view. Environmental Sciences Europe, 2013, 2, 143-154.	5.5	4
167	Transport of some non-electrolytes through amphibian skins. Comparative Biochemistry and Physiology A, Comparative Physiology, 1973, 46, 221-226.	0.6	3
168	Anomalous effects of Amphotericin B on the non-electrolyte fluxes through the skin of Rana esculenta. General Pharmacology, 1975, 6, 105-108.	0.7	3
169	Colchicine effect on the permeability of the whole epithelium and of isolated cells of frog skin. Journal of Bioenergetics and Biomembranes, 1979, 11, 103-112.	2.3	3
170	Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles—New Insights for Structural and Functional Studies. Cells, 2019, 8, 119.	4.1	3
171	Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka. Scientific Reports, 2020, 10, 10268.	3.3	3
172	Activation of the Thiazide-Sensitive Sodium-Chloride Cotransporter by Beta3-Adrenoreceptor in the Distal Convoluted Tubule. Frontiers in Physiology, 2021, 12, 695824.	2.8	3
173	Permeability Properties of the Frog Skin at Various Degrees of Edge Damage. Archives Internationales De Physiologie Et De Biochimie, 1975, 83, 837-843.	0.2	2
174	Aquaporin-CHIP-related protein in frog urinary bladder: Localization by confocal microscopy. Journal of Membrane Biology, 1995, 143, 267-71.	2.1	2
175	Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 368-376.	2.6	2
176	Role of Nuclear Lamin A/C in the Regulation of Nav1.5 Channel and Microtubules: Lesson From the Pathogenic Lamin A/C Variant Q517X. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2
177	cAMP levels and $\hat{l}\pm$ and \hat{l}^2 receptors stimulation by noradrenaline in frog skin. General Pharmacology, 1983, 14, 673-676.	0.7	1
178	Evidence for the role of calcium in the hydrosmotic response to antidiuretic hormone in frog skin. Pflugers Archiv European Journal of Physiology, 1984, 402, 166-170.	2.8	1
179	Evidence for a two-site model of forskolin action in frog urinary bladder. Pflugers Archiv European Journal of Physiology, 1987, 409, 486-491.	2.8	1
180	Biophysical assessment of AQP9 as real membrane pathway in hepatocyte glycerol uptake. FASEB Journal, 2010, 24, 1000.7.	0.5	1

#	Article	IF	CITATIONS
181	Permeability Properties of Epithelia as Compared to Lipid Bdlayer Membranes. Archives Internationales De Physiologie Et De Biochimie, 1973, 81, 283-286.	0.2	Ο
182	Protective effect of hydrocortisone on vasopressin response in frog skin. Pflugers Archiv European Journal of Physiology, 1981, 392, 152-156.	2.8	0
183	The Authors Reply:. Kidney International, 2015, 87, 862-863.	5.2	Ο
184	Aquaporin 2 and Adducin Polymorphism Impact on Essential Hypertension. FASEB Journal, 2008, 22, 934.25.	0.5	0
185	Orthogonal Arrays of Particles alter cytoskeleton and cell invasion dynamics in GBM and glioma cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR34-2.	0.0	0