
Jun Un Ninomiya-Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5069049/publications.pdf

Version: 2024-02-01

ILIN UN NINOMIYA-TSILL

#	Article	IF	CITATIONS
1	TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
2	Necroptosis mediators RIPK3 and MLKL suppress intracellular <i>Listeria</i> replication independently of host cell killing. Journal of Cell Biology, 2019, 218, 1994-2005.	2.3	48
3	Coordinating Tissue Regeneration Through Transforming Growth Factor-Î ² Activated Kinase 1 Inactivation and Reactivation. Stem Cells, 2019, 37, 766-778.	1.4	10
4	Compound mutations in <i>Bmpr1a</i> and <i>Tak1</i> synergize facial deformities via increased cell death. Genesis, 2018, 56, e23093.	0.8	14
5	TAK1 regulates resident macrophages by protecting lysosomal integrity. Cell Death and Disease, 2017, 8, e2598.	2.7	13
6	Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. Scientific Reports, 2017, 7, 2918.	1.6	8
7	TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. Antioxidants and Redox Signaling, 2016, 25, 953-964.	2.5	65
8	TAK1 determines susceptibility to endoplasmic reticulum stress and hypothalamic leptin resistance. Journal of Cell Science, 2016, 129, 1855-65.	1.2	11
9	Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Developmental Biology, 2015, 398, 231-241.	0.9	43
10	TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. Journal of Cell Biology, 2014, 204, 607-623.	2.3	78
11	TAK1 Binding Protein 2 Is Essential for Liver Protection from Stressors. PLoS ONE, 2014, 9, e88037.	1.1	14
12	Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins. PLoS ONE, 2014, 9, e94982.	1.1	29
13	Kinase-Independent Feedback of the TAK1/TAB1 Complex on BCL10 Turnover and NF-κB Activation. Molecular and Cellular Biology, 2013, 33, 1149-1163.	1.1	15
14	TGF-β-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells. Journal of Biological Chemistry, 2013, 288, 13467-13480.	1.6	70
15	Epithelial transforming growth factor Â-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3365-3370.	3.3	51
16	TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood, 2012, 120, 3846-3857.	0.6	52
17	TAK1 (MAP3K7) Signaling Regulates Hematopoietic Stem Cells through TNF-Dependent and -Independent Mechanisms. PLoS ONE, 2012, 7, e51073.	1.1	11
18	Inhibition of autophagy by TAB2 and TAB3. EMBO Journal, 2011, 30, 4908-4920.	3.5	85

#	Article	IF	CITATIONS
19	Ablation of TAK1 Upregulates Reactive Oxygen Species and Selectively Kills Tumor Cells. Cancer Research, 2010, 70, 8417-8425.	0.4	37
20	Regulation of Genotoxic Stress Response by Homeodomain-interacting Protein Kinase 2 through Phosphorylation of Cyclic AMP Response Element-binding Protein at Serine 271. Molecular Biology of the Cell, 2010, 21, 2966-2974.	0.9	25
21	TGF-β–Activated Kinase 1 Signaling Maintains Intestinal Integrity by Preventing Accumulation of Reactive Oxygen Species in the Intestinal Epithelium. Journal of Immunology, 2010, 185, 4729-4737.	0.4	51
22	Transforming Growth Factor β-activated Kinase 1 (TAK1) Kinase Adaptor, TAK1-binding Protein 2, Plays Dual Roles in TAK1 Signaling by Recruiting Both an Activator and an Inhibitor of TAK1 Kinase in Tumor Necrosis Factor Signaling Pathway. Journal of Biological Chemistry, 2010, 285, 2333-2339.	1.6	64
23	Intestinal Epithelial-Derived TAK1 Signaling Is Essential for Cytoprotection against Chemical-Induced Colitis. PLoS ONE, 2009, 4, e4561.	1.1	26
24	Generation of a conditional mutant allele for <i>Tab1</i> in mouse. Genesis, 2008, 46, 431-439.	0.8	14
25	TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling. Journal of Biological Chemistry, 2008, 283, 33080-33086.	1.6	61
26	TAB4 Stimulates TAK1-TAB1 Phosphorylation and Binds Polyubiquitin to Direct Signaling to NF-κB. Journal of Biological Chemistry, 2008, 283, 19245-19254.	1.6	42
27	TAK1 Regulates Reactive Oxygen Species and Cell Death in Keratinocytes, Which Is Essential for Skin Integrity. Journal of Biological Chemistry, 2008, 283, 26161-26168.	1.6	91
28	Enterocyte-Derived TAK1 Signaling Prevents Epithelium Apoptosis and the Development of Ileitis and Colitis. Journal of Immunology, 2008, 181, 1143-1152.	0.4	136
29	TAK1 Is a Central Mediator of NOD2 Signaling in Epidermal Cells. Journal of Biological Chemistry, 2008, 283, 137-144.	1.6	79
30	TAK1 MAPK Kinase Kinase Mediates Transforming Growth Factor-β Signaling by Targeting SnoN Oncoprotein for Degradation. Journal of Biological Chemistry, 2007, 282, 9475-9481.	1.6	36
31	Osmotic stress blocks NFâ€iºBâ€dependent inflammatory responses by inhibiting ubiquitination of lκB. FEBS Letters, 2007, 581, 5549-5554.	1.3	2
32	TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. International Immunology, 2006, 18, 1405-1411.	1.8	110
33	Osmotic Stress Activates the TAK1-JNK Pathway While Blocking TAK1-mediated NF-ήB Activation. Journal of Biological Chemistry, 2006, 281, 28802-28810.	1.6	53
34	Protein Phosphatase 6 Down-regulates TAK1 Kinase Activation in the IL-1 Signaling Pathway. Journal of Biological Chemistry, 2006, 281, 39891-39896.	1.6	124
35	TAK1 Is a Component of the Epstein-Barr Virus LMP1 Complex and Is Essential for Activation of JNK but Not of NF-κB. Journal of Biological Chemistry, 2006, 281, 7863-7872.	1.6	34
36	TAK1 Is a Master Regulator of Epidermal Homeostasis Involving Skin Inflammation and Apoptosis. Journal of Biological Chemistry, 2006, 281, 19610-19617.	1.6	136

#	Article	IF	CITATIONS
37	TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes To Cells, 2005, 10, 447-454.	0.5	78
38	Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunology, 2005, 6, 1087-1095.	7.0	839
39	AMP-Activated Protein Kinase Activates p38 Mitogen-Activated Protein Kinase by Increasing Recruitment of p38 MAPK to TAB1 in the Ischemic Heart. Circulation Research, 2005, 97, 872-879.	2.0	210
40	Transforming Growth Factor β-Activated Kinase 1 Is a Key Mediator of Ovine Follicle-Stimulating Hormone β-Subunit Expression. Endocrinology, 2005, 146, 4814-4824.	1.4	29
41	Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes and Development, 2004, 18, 816-829.	2.7	151
42	Activation Mechanism of c-Jun Amino-terminal Kinase in the Course of Neural Differentiation of P19 Embryonic Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 36616-36620.	1.6	20
43	Involvement of ASK1 in Ca 2+ â€induced p38 MAP kinase activation. EMBO Reports, 2004, 5, 161-166.	2.0	175
44	Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO Journal, 2003, 22, 6277-6288.	3.5	242
45	Functional analyses of mammalian protein kinase C isozymes in budding yeast and mammalian fibroblasts. Genes To Cells, 2003, 2, 601-614.	0.5	19
46	TAK1 is Critical for lκB Kinase-mediated Activation of the NF-κB Pathway. Journal of Molecular Biology, 2003, 326, 105-115.	2.0	353
47	A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-β. Biochemical and Biophysical Research Communications, 2003, 307, 332-337.	1.0	64
48	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca 2+ Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	1.1	503
49	TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling. Molecular and Cellular Biology, 2003, 23, 1231-1238.	1.1	114
50	Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt∫î²-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 1379-1389.	1.1	202
51	A Resorcylic Acid Lactone, 5Z-7-Oxozeaenol, Prevents Inflammation by Inhibiting the Catalytic Activity of TAK1 MAPK Kinase Kinase. Journal of Biological Chemistry, 2003, 278, 18485-18490.	1.6	374
52	Regulation of the Interleukin-1-induced Signaling Pathways by a Novel Member of the Protein Phosphatase 2C Family (PP2Clµ). Journal of Biological Chemistry, 2003, 278, 12013-12021.	1.6	77
53	Interleukin-1 (IL-1) Receptor-Associated Kinase-Dependent IL-1-Induced Signaling Complexes Phosphorylate TAK1 and TAB2 at the Plasma Membrane and Activate TAK1 in the Cytosol. Molecular and Cellular Biology, 2002, 22, 7158-7167.	1.1	263
54	Receptor Activator of NF-κB Ligand (RANKL) Activates TAK1 Mitogen-Activated Protein Kinase Kinase Kinase through a Signaling Complex Containing RANK, TAB2, and TRAF6. Molecular and Cellular Biology, 2002, 22, 992-1000.	1.1	261

#	Article	IF	CITATIONS
55	SEKâ€1 MAPKK mediates Ca 2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Reports, 2002, 3, 56-62.	2.0	118
56	Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mechanisms of Development, 2002, 119, 239-249.	1.7	99
57	The MAPK Kinase Kinase TAK1 Plays a Central Role in Coupling the Interleukin-1 Receptor to Both Transcriptional and RNA-targeted Mechanisms of Gene Regulation. Journal of Biological Chemistry, 2001, 276, 3508-3516.	1.6	85
58	Regulation of the TAK1 Signaling Pathway by Protein Phosphatase 2C. Journal of Biological Chemistry, 2001, 276, 5753-5759.	1.6	129
59	An Evolutionarily Conserved Motif in the TAB1 C-terminal Region Is Necessary for Interaction with and Activation of TAK1 MAPKKK. Journal of Biological Chemistry, 2001, 276, 24396-24400.	1.6	58
60	IRAK-mediated Translocation of TRAF6 and TAB2 in the Interleukin-1-induced Activation of NFκB. Journal of Biological Chemistry, 2001, 276, 41661-41667.	1.6	193
61	Interleukin-1 (IL-1) Receptor-Associated Kinase Leads to Activation of TAK1 by Inducing TAB2 Translocation in the IL-1 Signaling Pathway. Molecular and Cellular Biology, 2001, 21, 2475-2484.	1.1	179
62	ASK1 Inhibits Interleukin-1-induced NF-κB Activity through Disruption of TRAF6-TAK1 Interaction. Journal of Biological Chemistry, 2000, 275, 32747-32752.	1.6	52
63	TAK1 Mitogen-activated Protein Kinase Kinase Kinase Is Activated by Autophosphorylation within Its Activation Loop. Journal of Biological Chemistry, 2000, 275, 7359-7364.	1.6	236
64	TAB2, a Novel Adaptor Protein, Mediates Activation of TAK1 MAPKKK by Linking TAK1 to TRAF6 in the IL-1 Signal Transduction Pathway. Molecular Cell, 2000, 5, 649-658.	4.5	555
65	Molecular cloning of MINK, a novel member of mammalian GCK family kinases, which is up-regulated during postnatal mouse cerebral development. FEBS Letters, 2000, 469, 19-23.	1.3	63
66	Involvement of the p38 Mitogen-activated Protein Kinase Pathway in Transforming Growth Factor-β-induced Gene Expression. Journal of Biological Chemistry, 1999, 274, 27161-27167.	1.6	407
67	The kinase TAK1 can activate the NIK-lκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999, 398, 252-256.	13.7	1,118
68	MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 1999, 399, 793-797.	13.7	263
69	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	13.7	569
70	XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO Journal, 1999, 18, 179-187.	3.5	330
71	G1 phase-specific suppression of the Cdk2 activity by ginsenoside Rh2 in cultured murine cells. Life Sciences, 1996, 60, PL39-PL44.	2.0	16
72	IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: Demonstration of a novel role for c-myc. Cell, 1992, 70, 57-67.	13.5	250

#	Article	IF	CITATIONS
73	New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature, 1992, 357, 700-702.	13.7	186
74	Cyclin-dependent kinase 2 (cdk2) in the murine cdc2 kinaseTS mutant. Somatic Cell and Molecular Genetics, 1992, 18, 403-408.	0.7	3
75	Nonlethal G0-ts mutant tsJT60 becomes lethal at the nonpermissive temperature after transformation: A hint for new cancer chemotherapeutics Cell Structure and Function, 1990, 15, 385-391.	0.5	1
76	A cell cycle G0-ts mutant, tsJT60, becomes lethal at the nonpermissive temperature after transformation with adenovirus 12 E1B 19K mutant. Experimental Cell Research, 1988, 179, 50-57.	1.2	2
77	Induction of cellular DNA synthesis in GO-specific ts mutant, tsJT60, following Infection with SV40 and adenoviruses. Experimental Cell Research, 1987, 171, 509-512.	1.2	5
78	Epidermal growth factor has a unique effect in combination with fetal bovine serum to bypass the ts-block of Go-specific ts mutant tsJT60. Experimental Cell Research, 1987, 171, 86-93.	1.2	4
79	tsJT60, a cell cycle G0-ts mutant, becomes lethal at non-permissive temperature by transformation with adenovirus 5 when the expression of E1B gene is lacking. Experimental Cell Research, 1987, 170, 491-498.	1.2	3
80	Colchicine activates cell cycle-dependent genes in growth-arrested rat 3Y1 cells. Experimental Cell Research, 1987, 173, 294-298.	1.2	14
81	Defect in prereplicative phase of GO-specific ts mutant, tsJT60. Experimental Cell Research, 1986, 165, 191-198.	1.2	8
82	lsolation of ts mutant cells which arrest in G1/G0 phase at the non-permissive temperature in the presence of appropriate growth factors from a Fischer rat cell line, 3Y1. Experimental Cell Research, 1986, 165, 337-344.	1.2	4
83	Expression of growth-regulated genes in TSJT60 cells, a temperature-sensitive mutant of the cell cycle. Biochemistry, 1986, 25, 7041-7046.	1.2	31
84	Failure in S6 protein phosphorylation by serum stimulatio of senescent human diploid fibroblasts, TIG-1. Mechanisms of Ageing and Development, 1986, 37, 27-40.	2.2	10
85	Tak1. The AFCS-nature Molecule Pages, 0, , .	0.2	11
86	Tab1. The AFCS-nature Molecule Pages, 0, , .	0.2	0
87	Mitochondrial Dysfunction. , 0, , 319-332.		2