Boris Mizaikoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5068941/publications.pdf

Version: 2024-02-01

473 papers

12,770 citations

23567 58 h-index 84 g-index

498 all docs

498 docs citations

times ranked

498

11213 citing authors

#	Article	IF	Citations
1	Integrating an Ultramicroelectrode in an AFM Cantilever:  Combined Technology for Enhanced Information. Analytical Chemistry, 2001, 73, 2491-2500.	6.5	301
2	Molecularly imprinted polymersâ€"potential and challenges in analytical chemistry. Analytica Chimica Acta, 2005, 534, 31-39.	5.4	260
3	Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annual Review of Analytical Chemistry, 2016, 9, 45-68.	5.4	230
4	Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine. Journal of Agricultural and Food Chemistry, 2002, 50, 1804-1808.	5.2	176
5	The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 2011, 359, 289-295.	9.4	171
6	Integrated AFM–SECM in Tapping Mode: Simultaneous Topographical and Electrochemical Imaging of Enzyme Activity. Angewandte Chemie - International Edition, 2003, 42, 3238-3240.	13.8	150
7	Waveguide-enhanced mid-infrared chem/bio sensors. Chemical Society Reviews, 2013, 42, 8683.	38.1	142
8	Degradation of Amine-Based Water Treatment Polymers during Chloramination as <i>N-</i> Nitrosodimethylamine (NDMA) Precursors. Environmental Science &	10.0	140
9	Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Scientific Reports, 2014, 4, 6764.	3.3	140
10	Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Analytical and Bioanalytical Chemistry, 2008, 391, 1641-1654.	3.7	139
11	Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC - Trends in Analytical Chemistry, 2019, 114, 202-217.	11.4	138
12	Molecularly imprinted micro and nanospheres for the selective recognition of $17\hat{l}^2$ -estradiol. Biosensors and Bioelectronics, 2006, 21, 1943-1951.	10.1	133
13	Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy. A Chemical Sensors Approach. Analytical Chemistry, 1999, 71, 4786-4791.	6.5	128
14	Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, The, 2015, 140, 765-770.	3.5	128
15	Peer Reviewed: Mid-IR Fiber-Optic Sensors. Analytical Chemistry, 2003, 75, 258 A-267 A.	6.5	122
16	Amperometric ATP biosensor based on polymer entrapped enzymes. Biosensors and Bioelectronics, 2004, 19, 1301-1307.	10.1	116
17	PolyDADMAC and Dimethylamine as Precursors of <i>N</i> -Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Environmental Science	10.0	116
18	In-Situ AFM Studies of the Phase-Transition Behavior of Single Thermoresponsive Hydrogel Particles. Langmuir, 2007, 23, 130-137.	3.5	109

#	Article	IF	Citations
19	Simultaneous Quantitative Determination of Benzene, Toluene, and Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy. Analytical Chemistry, 2004, 76, 2643-2648.	6.5	99
20	Mid-infrared spectroscopy for protein analysis: potential and challenges. Analytical and Bioanalytical Chemistry, 2016, 408, 2875-2889.	3.7	96
21	Towards the rational development of molecularly imprinted polymers: 1H NMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity. Biosensors and Bioelectronics, 2005, 20, 1884-1893.	10.1	94
22	Advances in the analysis of mycotoxins and its quality assurance. Food Additives and Contaminants, 2005, 22, 345-353.	2.0	94
23	Capturing molecules with templated materials—Analysis and rational design of molecularly imprinted polymers. Analytica Chimica Acta, 2006, 578, 50-58.	5.4	94
24	FIB/SEM tomography with TEM-like resolution for 3D imaging of high-pressure frozen cells. Histochemistry and Cell Biology, 2012, 138, 549-556.	1.7	93
25	Toward On-Chip Mid-Infrared Sensors. Analytical Chemistry, 2016, 88, 5562-5573.	6.5	92
26	Substrate-Integrated Hollow Waveguides: A New Level of Integration in Mid-Infrared Gas Sensing. Analytical Chemistry, 2013, 85, 11205-11210.	6.5	89
27	High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nature Protocols, 2016, 11, 377-386.	12.0	85
28	Mapping of enzyme activity by detection of enzymatic products during AFM imaging with integrated SECM–AFM probes. Ultramicroscopy, 2004, 100, 127-134.	1.9	82
29	AFM-Tip-Integrated Amperometric Microbiosensors: High-Resolution Imaging of Membrane Transport. Angewandte Chemie - International Edition, 2005, 44, 3419-3422.	13.8	81
30	Breath Analysis with Broadly Tunable Quantum Cascade Lasers. Analytical Chemistry, 2013, 85, 2697-2702.	6.5	81
31	Improving methods of analysis for mycotoxins: molecularly imprinted polymers for deoxynivalenol and zearalenone. Food Additives and Contaminants, 2003, 20, 386-395.	2.0	80
32	Recent advances on noncovalent molecular imprints for affinity separations. Journal of Separation Science, 2007, 30, 1794-1805.	2.5	80
33	Mid-infrared evanescent wave sensors - a novel approach for subsea monitoring. Measurement Science and Technology, 1999, 10, 1185-1194.	2.6	79
34	Molecular imprinting and solid phase extraction of flavonoid compounds. Bioseparation, 2001, 10, 379-387.	0.7	78
35	Analyzing the Mechanisms of Selectivity in Biomimetic Self-Assemblies via IR and NMR Spectroscopy of Prepolymerization Solutions and Molecular Dynamics Simulations. Analytical Chemistry, 2005, 77, 5196-5204.	6.5	77
36	Enhanced hydrothermal stability of Cu MOF by post synthetic modification with amino acids. Vacuum, 2019, 164, 449-457.	3.5	75

#	Article	IF	CITATIONS
37	Anatomy of a successful imprint: Analysing the recognition mechanisms of a molecularly imprinted polymer for quercetin. Biosensors and Bioelectronics, 2006, 21, 1383-1392.	10.1	73
38	Combined scanning electrochemical atomic force microscopy for tapping mode imaging. Applied Physics Letters, 2003, 82, 1592-1594.	3.3	72
39	Recent advances on the characterization of nanoparticles using infrared spectroscopy. TrAC - Trends in Analytical Chemistry, 2016, 84, 97-106.	11.4	72
40	Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Applied Physics Letters, 2005, 86, 194102.	3.3	71
41	Surface-Enhanced Vibrational Spectroscopy: A New Tool in Chemical IR Sensing?. Applied Spectroscopy, 1997, 51, 495-503.	2.2	70
42	Label-Free DNA Detection Based on Modified Conducting Polypyrrole Films at Microelectrodes. Analytical Chemistry, 2006, 78, 1139-1145.	6.5	70
43	Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers. Analyst, The, 2012, 137, 2322.	3.5	70
44	Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst, The, 2014, 139, 198-203.	3.5	70
45	Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes. Analytical Chemistry, 2008, 80, 237-245.	6.5	69
46	Potential and Challenges for Mid-Infrared Sensors in Breath Diagnostics. IEEE Sensors Journal, 2010, 10, 145-158.	4.7	69
47	Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst, The, 2018, 143, 359-373.	3.5	69
48	Infrared fiber-optical chemical sensors with reactive surface coatings. Sensors and Actuators B: Chemical, 1995, 29, 58-63.	7.8	68
49	Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. Polymers for Advanced Technologies, 2016, 27, 1124-1142.	3.2	68
50	Fabrication and Characterization of Molecular Beam Epitaxy Grown Thin-Film GaAs Waveguides for Mid-Infrared Evanescent Field Chemical Sensing. Analytical Chemistry, 2006, 78, 4224-4227.	6.5	66
51	Miniaturized mid-infrared sensor technologies. Analytical and Bioanalytical Chemistry, 2008, 390, 231-237.	3.7	65
52	Investigating the mechanisms of $17\hat{l}^2$ -estradiol imprinting by computational prediction and spectroscopic analysis. Analytical and Bioanalytical Chemistry, 2007, 389, 423-431.	3.7	64
53	Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics. Sensors and Actuators B: Chemical, 2016, 225, 199-208.	7.8	64
54	Towards a remote IR fiber-optic sensor system for the determination of chlorinated hydrocarbons in water. Sensors and Actuators B: Chemical, 1997, 38, 83-87.	7.8	63

#	Article	IF	Citations
55	Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides. Analytical Chemistry, 2005, 77, 4398-4403.	6.5	63
56	Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst, The, 2007, 132, 1161.	3. 5	63
57	Monitoring dissolved carbon dioxide and methane in brine environments at high pressure using IR-ATR spectroscopy. Analytical Methods, 2016, 8, 756-762.	2.7	62
58	Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules, 2020, 25, 2227.	3.8	62
59	Advances in imprinting strategies for selective virus recognition a review. TrAC - Trends in Analytical Chemistry, 2019, 114, 218-232.	11.4	61
60	External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection. Sensors and Actuators B: Chemical, 2009, 140, 24-28.	7.8	60
61	Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy. Biosensors and Bioelectronics, 2005, 21, 346-353.	10.1	59
62	Integrating micro- and nanoelectrodes into atomic force microscopy cantilevers using focused ion beam techniques. Applied Physics Letters, 2002, 81, 349-351.	3.3	58
63	Infrared Hollow Waveguide Sensors for Simultaneous Gas Phase Detection of Benzene, Toluene, and Xylenes in Field Environments. Analytical Chemistry, 2011, 83, 6141-6147.	6. 5	58
64	Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Analytica Chimica Acta, 2012, 744, 68-74.	5 . 4	58
65	On-Chip Integrated Mid-Infrared GaAs/AlGaAs Mach–Zehnder Interferometer. Analytical Chemistry, 2013, 85, 3050-3052.	6.5	56
66	Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosensors and Bioelectronics, 2015, 65, 108-114.	10.1	55
67	Numerical Simulation of Scanning Electrochemical Microscopy Experiments with Frame-Shaped Integrated Atomic Force Microscopyâ^'SECM Probes Using the Boundary Element Method. Analytical Chemistry, 2005, 77, 764-771.	6.5	53
68	Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors. Sensors and Actuators B: Chemical, 2019, 280, 272-279.	7.8	51
69	Mid-Infrared Waveguides: A Perspective. Applied Spectroscopy, 2016, 70, 1625-1638.	2.2	50
70	Online Analysis of H ₂ S and SO ₂ via Advanced Mid-Infrared Gas Sensors. Analytical Chemistry, 2015, 87, 9605-9611.	6.5	49
71	Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst, The, 2017, 142, 951-958.	3 . 5	49
72	Imprinted Polymeric Materials. Insight into the Nature of Prepolymerization Complexes of Quercetin Imprinted Polymers. Analytical Chemistry, 2006, 78, 6187-6190.	6.5	48

#	Article	IF	CITATIONS
73	Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers. Analytical Chemistry, 2016, 88, 2558-2562.	6.5	48
74	Fabrication of a ring nanoelectrode in an AFM tip: novel approach towards simultaneous electrochemical and topographical imaging. Surface and Interface Analysis, 2002, 33, 146-150.	1.8	47
75	Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development. PLoS ONE, 2013, 8, e75247.	2.5	47
76	Sol–gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution. Analytica Chimica Acta, 2003, 496, 339-348.	5.4	46
77	Graphene-Based Surface Enhanced Vibrational Spectroscopy: Recent Developments, Challenges, and Applications. ACS Photonics, 2019, 6, 2182-2197.	6.6	46
78	Local detection of mechanically induced ATP release from bone cells with ATP microbiosensors. Biosensors and Bioelectronics, 2013, 44, 27-33.	10.1	45
79	Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles. Analytica Chimica Acta, 2017, 990, 141-149.	5.4	45
80	Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochemistry Communications, 2007, 9, 1311-1315.	4.7	44
81	Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors. Applied Spectroscopy, 2009, 63, 331-337.	2.2	44
82	IRâ€ATR Chemical Sensors Based on Planar Silver Halide Waveguides Coated with an Ethylene/Propylene Copolymer for Detection of Multiple Organic Contaminants in Water. Angewandte Chemie - International Edition, 2013, 52, 2265-2268.	13.8	44
83	Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Analytical and Bioanalytical Chemistry, 2015, 407, 653-660.	3.7	44
84	Hollow-waveguide gas sensing with room-temperature quantum cascade lasers. IEE Proceedings: Optoelectronics, 2003, 150, 306.	0.8	43
85	Application of Mid-Infrared Spectroscopy: Measuring Hydrogen Peroxide Concentrations in Bleaching Baths. Applied Spectroscopy, 2003, 57, 574-579.	2.2	43
86	Diamonds Are a Spectroscopist's Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors. Analytical Chemistry, 2014, 86, 8136-8141.	6.5	43
87	Towards the determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors. Journal of Breath Research, 2014, 8, 026003.	3.0	43
88	Independent Actuation of Two-Tailed Microrobots. IEEE Robotics and Automation Letters, 2018, 3, 1703-1710.	5.1	43
89	Improved In Vitro Model for Intranasal Mucosal Drug Delivery: Primary Olfactory and Respiratory Epithelial Cells Compared with the Permanent Nasal Cell Line RPMI 2650. Pharmaceutics, 2019, 11, 367.	4.5	43
90	New Frontiers for Mid-Infrared Sensors: Towards Deep Sea Monitoring with a Submarine FT-IR Sensor System. Applied Spectroscopy, 2003, 57, 591-599.	2.2	42

#	Article	IF	CITATIONS
91	In Situ Sensing of Volatile Organic Compounds in Groundwater: First Field Tests of a Mid-Infrared Fiber-Optic Sensing System. Applied Spectroscopy, 2003, 57, 607-613.	2.2	42
92	Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Scientific Reports, 2013, 3, 2525.	3.3	42
93	Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a review. Analyst, The, 2016, 141, 3141-3156.	3.5	42
94	Direct Analysis of Oxidizing Agents in Aqueous Solution with Attenuated Total Reflectance Mid-Infrared Spectroscopy and Diamond-like Carbon Protected Waveguides. Analytical Chemistry, 2004, 76, 384-391.	6.5	41
95	Batch Fabrication of Atomic Force Microscopy Probes with Recessed Integrated Ring Microelectrodes at a Wafer Level. Analytical Chemistry, 2007, 79, 4769-4777.	6.5	41
96	Mercury–Cadmium–Telluride Waveguides – A Novel Strategy for On-Chip Mid-Infrared Sensors. Analytical Chemistry, 2013, 85, 10648-10652.	6.5	41
97	iHWG-νNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer. Analyst, The, 2014, 139, 3572.	3.5	41
98	Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins, 2020, 12, 320.	3.4	41
99	Design and implementation of an imprinted material for the extraction of the endocrine disruptor bisphenol A from milk. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 931, 164-169.	2.3	40
100	Quantum cascade lasers for mid-infrared spectroscopy. Vibrational Spectroscopy, 2002, 30, 53-58.	2.2	39
101	Liquid-Phase Chemical Sensing Using Lateral Mode Resonant Cantilevers. Analytical Chemistry, 2010, 82, 7542-7549.	6.5	39
102	Molecularly imprinted polymers for selective extraction of rosmarinic acid from Rosmarinus officinalis L Food Chemistry, 2021, 335, 127644.	8.2	39
103	A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing. International Journal of Environmental Analytical Chemistry, 2006, 86, 401-415.	3.3	38
104	A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1596-1607.	2.3	38
105	MBE Growth of Mid-wave Infrared HgCdTe Layers on GaSb Alternative Substrates. Journal of Electronic Materials, 2015, 44, 3180-3187.	2.2	37
106	Detection of Hydrocarbons in Water by MIR Evanescent-Wave Spectroscopy with Flattened Silver Halide Fibers. Applied Spectroscopy, 2001, 55, 39-43.	2.2	36
107	Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors. Scientific Reports, 2013, 3, 3174.	3.3	36
108	Fingerprinting Oils in Water via Their Dissolved VOC Pattern Using Mid-Infrared Sensors. Analytical Chemistry, 2014, 86, 9512-9517.	6.5	36

#	Article	IF	Citations
109	Enhanced Selectivity by Passivation: Molecular Imprints for Viruses with Exceptional Binding Properties. Analytical Chemistry, 2018, 90, 5576-5585.	6.5	36
110	Model-Based Optimal Design of Polymer-Coated Chemical Sensors. Analytical Chemistry, 2003, 75, 1106-1115.	6.5	35
111	Infrared optical sensors for water quality monitoring. Water Science and Technology, 2003, 47, 35-42.	2.5	35
112	Amperometric ATP Microbiosensors for the Analysis of Chemosensitivity at Rat Carotid Bodies. Analytical Chemistry, 2008, 80, 3991-3998.	6.5	34
113	Combining Scanning Electrochemical Microscopy with Infrared Attenuated Total Reflection Spectroscopy for <i>in Situ</i> Studies of Electrochemically Induced Processes. Analytical Chemistry, 2010, 82, 3139-3145.	6.5	34
114	Surface enhanced infrared absorption spectroscopy (SEIRA) using external reflection on low-cost substrates. Fresenius' Journal of Analytical Chemistry, 1998, 362, 15-20.	1.5	33
115	Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers. Applied Optics, 2000, 39, 6926.	2.1	33
116	Analysis of Corrosion Processes at the Surface of Diamond-Like Carbon Protected Zinc Selenide Waveguides. Langmuir, 2004, 20, 8634-8640.	3.5	33
117	Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Analytica Chimica Acta, 2013, 788, 122-128.	5.4	33
118	Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Organic Geochemistry, 2013, 55, 63-71.	1.8	33
119	Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy. Analytical Chemistry, 2016, 88, 6174-6178.	6.5	33
120	Binding site characteristics of $17\hat{l}^2$ -estradiol imprinted polymers. Biosensors and Bioelectronics, 2007, 23, 201-209.	10.1	32
121	Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Micron, 2015, 68, 27-35.	2.2	32
122	Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis. Scientific Reports, 2017, 7, 44028.	3.3	32
123	Gold-nanostar-based SERS substrates for studying protein aggregation processes. Analyst, The, 2018, 143, 5103-5111.	3.5	32
124	Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: Paracetamol. Sensing and Bio-Sensing Research, 2019, 24, 100288.	4.2	32
125	Infrared fiber optic gas sensor for chlorofluorohydrocarbons. Vibrational Spectroscopy, 1995, 8, 103-108.	2.2	31
126	Infrared Attenuated Total Reflection Spectroscopy of Quartz and Silica Micro- and Nanoparticulate Films. Journal of Physical Chemistry C, 2012, 116, 37-43.	3.1	31

#	Article	IF	CITATIONS
127	A streptococcal NRAMP homologue is crucial for the survival of <scp><i>S</i></scp> <i>treptococcus agalactiae</i> under low pH conditions. Molecular Microbiology, 2016, 100, 589-606.	2.5	31
128	Assessment of quantum cascade lasers as mid infrared light sources for measurement of aqueous samples. Vibrational Spectroscopy, 2002, 29, 283-289.	2.2	30
129	Surface imprinting of pepsin via miniemulsion polymerization. Journal of Materials Chemistry B, 2013, 1, 5489.	5.8	30
130	Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments. Analytical Chemistry, 2015, 87, 12306-12312.	6.5	30
131	Inhibiting P. fluorescens biofilms with fluoropolymer-embedded silver nanoparticles: an in-situ spectroscopic study. Scientific Reports, 2017, 7, 11870.	3.3	30
132	A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water. Analytica Chimica Acta, 2000, 422, 187-198.	5.4	29
133	Molecularly Imprinted Polymers for Nitrophenols - An Advanced Separation Material for Environmental Analysis. International Journal of Environmental Analytical Chemistry, 2001, 80, 75-86.	3.3	29
134	Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry. Analyst, The, 2011, 136, 1831.	3.5	29
135	<i>Breath Analysis by Mass Spectrometry: A New Tool for Breast Cancer Detection?</i> Surgeon, 2011, 77, 747-751.	0.8	29
136	Toward the quantification of the 13CO2/12CO2 ratio in exhaled mouse breath with mid-infrared hollow waveguide gas sensors. Analytical and Bioanalytical Chemistry, 2012, 402, 397-404.	3.7	29
137	Infrared Attenuated Total Reflection Spectroscopy for the Characterization of Gold Nanoparticles in Solution. Analytical Chemistry, 2014, 86, 783-789.	6.5	29
138	Midâ€infrared thinâ€film diamond waveguides combined with tunable quantum cascade lasers for analyzing the secondary structure of proteins. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2117-2123.	1.8	29
139	A Mid-Infrared Sensor for Monitoring of Chlorinated Hydrocarbons in the Marine Environment. International Journal of Environmental Analytical Chemistry, 2000, 78, 367-383.	3.3	28
140	Frequency Dependence of the Electrochemical Activity Contrast in AC-Scanning Electrochemical Microscopy and Atomic Force Microscopy-AC-Scanning Electrochemical Microscopy Imaging. Analytical Chemistry, 2007, 79, 5435-5438.	6.5	28
141	Combined Atomic Force Microscopy–Fluorescence Microscopy: Analyzing Exocytosis in Alveolar Type II Cells. Analytical Chemistry, 2012, 84, 5716-5722.	6.5	28
142	Scanning electrochemical microscopy imaging of rhodochrosite dissolution using gold amalgam microelectrodes. Analyst, The, 2004, 129, 443.	3.5	27
143	Combination of Sorption Tube Sampling and Thermal Desorption with Hollow Waveguide FT-IR Spectroscopy for Atmospheric Trace Gas Analysis:Â Determination of Atmospheric Ethene at the Lower ppb Level. Analytical Chemistry, 2004, 76, 464-468.	6.5	27
144	Characterization of a Mid-Infrared Hollow Waveguide Gas Cell for the Analysis of Carbon Monoxide and Nitric Oxide. Applied Spectroscopy, 2006, 60, 266-271.	2.2	27

#	Article	IF	Citations
145	Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells. Analyst, The, 2012, 137, 5208.	3.5	27
146	Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS. Mikrochimica Acta, 2014, 181, 1101-1108.	5.0	27
147	Smallâ€scale purification of butyrylcholinesterase from human plasma and implementation of a μLCâ€UV/ESI MS/MS method to detect its organophosphorus adducts. Drug Testing and Analysis, 2015, 7, 947-956.	2.6	27
148	iHWG-ICL: Methane Sensing with Substrate-Integrated Hollow Waveguides Directly Coupled to Interband Cascade Lasers. ACS Sensors, 2016, 1, 847-851.	7.8	27
149	Photocatalytic and antibacterial biomimetic ZnO nanoparticles. Analytical Methods, 2017, 9, 4776-4782.	2.7	27
150	Surrogate Imprinting Strategies: Molecular Imprints via Fragments and Dummies. ACS Applied Polymer Materials, 2020, 2, 3714-3741.	4.4	27
151	Sol-Gel-Coated Mid-Infrared Fiber-Optic Sensors. Applied Spectroscopy, 2003, 57, 823-828.	2.2	26
152	Matrix assisted pulsed laser evaporation of biomaterial thin films. Materials Science and Engineering C, 2007, 27, 514-522.	7.3	26
153	Binding performance of pepsin surface-imprinted polymer particles in protein mixtures. Journal of Materials Chemistry B, 2015, 3, 6248-6254.	5.8	26
154	Fiber-Coupled Substrate-Integrated Hollow Waveguides: An Innovative Approach to Mid-infrared Remote Gas Sensors. ACS Sensors, 2017, 2, 1287-1293.	7.8	26
155	Degeneration alters the biomechanical properties and structural composition of lateral human menisci. Osteoarthritis and Cartilage, 2020, 28, 1482-1491.	1.3	26
156	Epitope-imprinted polymers for biomacromolecules: Recent strategies, future challenges and selected applications. TrAC - Trends in Analytical Chemistry, 2021, 143, 116414.	11.4	26
157	Ferroelectric fatigue endurance of Bi4â^'xLaxTi3O12 thin films explained in terms of x-ray photoelectron spectroscopy. Journal of Applied Physics, 2007, 101, 084112.	2.5	25
158	Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Food Additives and Contaminants, 2007, 24, 721-729.	2.0	25
159	Impact of oxygen atmosphere on piezoelectric properties of CaBi2Nb2O9 thin films. Acta Materialia, 2007, 55, 4707-4712.	7.9	25
160	In Situ Trace Analysis of Oil in Water with Mid-Infrared Fiberoptic Chemical Sensors. Analytical Chemistry, 2012, 84, 1274-1280.	6.5	25
161	Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors. Analyst, The, 2012, 137, 333-341.	3.5	25
162	Spectroscopic methods in gas hydrate research. Analytical and Bioanalytical Chemistry, 2012, 402, 163-173.	3.7	25

#	Article	IF	CITATIONS
163	Multivariate determination of 13CO2/12CO2 ratios in exhaled mouse breath with mid-infrared hollow waveguide gas sensors. Analytical and Bioanalytical Chemistry, 2013, 405, 4945-4951.	3.7	25
164	Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers. Journal of Optics (United Kingdom), 2014, 16, 094006.	2.2	25
165	Multi-phase real-time monitoring of oxygen evolution enables <i>in operando</i> water oxidation catalysis studies. Sustainable Energy and Fuels, 2018, 2, 1974-1978.	4.9	25
166	Development of wafer-level batch fabrication for combined atomic force–scanning electrochemical microscopy (AFM–SECM) probes. Sensors and Actuators B: Chemical, 2008, 134, 488-495.	7.8	24
167	Mass-Sensitive Detection of Gas-Phase Volatile Organics Using Disk Microresonators. Analytical Chemistry, 2011, 83, 3305-3311.	6.5	24
168	On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Colloids and Surfaces B: Biointerfaces, 2013, 102, 519-525.	5.0	24
169	Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers. Electrochimica Acta, 2015, 178, 45-54.	5.2	24
170	iCONVERT: An Integrated Device for the UV-Assisted Determination of H ₂ S via Mid-Infrared Gas Sensors. Analytical Chemistry, 2015, 87, 9580-9583.	6.5	24
171	Portable Mid-Infrared Sensor System for Monitoring CO ₂ and CH ₄ at High Pressure in Geosequestration Scenarios. ACS Sensors, 2016, 1, 413-419.	7.8	24
172	Infrared spectroscopy based on broadly tunable quantum cascade lasers and polycrystalline diamond waveguides. Analyst, The, 2018, 143, 5112-5119.	3.5	24
173	Chemometric analysis of the global pattern of volatile organic compounds in the exhaled breath of patients with COVID-19, post-COVID and healthy subjects. Proof of concept for post-COVID assessment. Talanta, 2022, 236, 122832.	5.5	24
174	Introduction and Application of Secured Principal Component Regression for Analysis of Uncalibrated Spectral Features in Optical Spectroscopy and Chemical Sensing. Analytical Chemistry, 2003, 75, 3050-3058.	6.5	23
175	Novel electrode materials based on ion beam induced deposition of platinum carbon composites. Electrochimica Acta, 2010, 55, 5725-5732.	5.2	23
176	Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst, The, 2013, 138, 6746.	3.5	23
177	Processing of mussel adhesive protein analog thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 247, 217-224.	6.1	22
178	Deuterium Oxide Dilution: A Novel Method to Study Apical Water Layers and Transepithelial Water Transport. Analytical Chemistry, 2013, 85, 4247-4250.	6.5	22
179	Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS). Mikrochimica Acta, 2018, 185, 153.	5.0	22
180	An Innovative Modular eNose System Based on a Unique Combination of Analog and Digital Metal Oxide Sensors. ACS Sensors, 2019, 4, 2277-2281.	7.8	22

#	Article	IF	Citations
181	Use of Super-Resolution Optical Microscopy To Reveal Direct Virus Binding at Hybrid Core–Shell Matrixes. Analytical Chemistry, 2020, 92, 3050-3057.	6.5	22
182	Plasma-Deposited Fluorocarbon Films: Insulation Material for Microelectrodes and Combined Atomic Force Microscopyâ^'Scanning Electrochemical Microscopy Probes. Analytical Chemistry, 2008, 80, 5260-5265.	6.5	21
183	Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups. Journal of Molecular Structure, 1997, 410-411, 535-538.	3.6	20
184	Mini spectrometer with silver halide sensor fiber for in situ detection of chlorinated hydrocarbons. Sensors and Actuators B: Chemical, 2003, 90, 319-323.	7.8	20
185	Processing of mussel-adhesive protein analog copolymer thin films by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 416-421.	6.1	20
186	Surface-modified ZnSe waveguides for label-free infrared attenuated total reflection detection of DNA hybridization. Analyst, The, 2011, 136, 4906.	3.5	20
187	Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells. Analytical and Bioanalytical Chemistry, 2011, 399, 2369-2378.	3.7	20
188	Atomic force microscopy probes with integrated boron doped diamond electrodes: Fabrication and application. Electrochemistry Communications, 2012, 25, 30-34.	4.7	20
189	A novel extraction device for efficient clean-up of molecularly imprinted polymers. Analytical Methods, 2012, 4, 2296.	2.7	20
190	iPRECON: an integrated preconcentrator for the enrichment of volatile organics in exhaled breath. Analytical Methods, 2015, 7, 3664-3667.	2.7	20
191	Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 4015-4021.	3.7	20
192	Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. Analyst, The, 2016, 141, 6061-6067.	3.5	20
193	Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. Analyst, The, 2016, 141, 6202-6207.	3.5	20
194	Focused ion beam-assisted fabrication of soft high-aspect ratio silicon nanowire atomic force microscopy probes. Ultramicroscopy, 2017, 179, 24-32.	1.9	20
195	Cyclic Changes in the Amide Bands Within <i>Escherichia coli</i> Biofilms Monitored Using Real-Time Infrared Attenuated Total Reflection Spectroscopy (IR-ATR). Applied Spectroscopy, 2019, 73, 424-432.	2.2	20
196	Breath analysis by mass spectrometry: a new tool for breast cancer detection?. American Surgeon, 2011, 77, 747-51.	0.8	20
197	Chemically Tapered Silver Halide Fibers: An Approach for Increasing the Sensitivity of Mid-Infrared Evanescent Wave Sensors. Applied Spectroscopy, 2000, 54, 1629-1633.	2.2	19
198	Dynamic determination of the dimension of PCA calibration models using F-statistics. Journal of Chemometrics, 2003, 17, 346-357.	1.3	19

#	Article	IF	Citations
199	Nature of defects for bismuth layered thin films grown on Pt electrodes. Applied Physics Letters, 2007, 90, 082910.	3.3	19
200	Compositional and Electrochemical Characterization of Noble Metalâ^Diamondlike Carbon Nanocomposite Thin Films. Langmuir, 2007, 23, 6812-6818.	3.5	19
201	Combined in Situ Atomic Force Microscopy- Infrared-Attenuated Total Reflection Spectroscopy. Analytical Chemistry, 2007, 79, 8803-8806.	6.5	19
202	Sensing chlorinated hydrocarbons via miniaturized GaAs/AlGaAs thin-film waveguide flow cells coupled to quantum cascade lasers. Analytical Methods, 2016, 8, 6602-6606.	2.7	19
203	Molecularly imprinted core–shell hybrid microspheres for the selective extraction of vanillin. Analytical Methods, 2017, 9, 2883-2889.	2.7	19
204	Virtually imprinted polymers (VIPs): understanding molecularly templated materials <i>via</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 13145-13152.	2.8	19
205	Cascade laser sensing concepts for advanced breath diagnostics. Analytical and Bioanalytical Chemistry, 2019, 411, 1679-1686.	3.7	19
206	Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin. Electroanalysis, 2020, 32, 2442-2451.	2.9	19
207	iHWG-MOX: A Hybrid Breath Analysis System via the Combination of Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Metal Oxide Gas Sensors. ACS Sensors, 2020, 5, 1033-1039.	7.8	19
208	Development and Optimization of a Mid-Infrared Hollow Waveguide Gas Sensor Combined with a Supported Capillary Membrane Sampler. Applied Spectroscopy, 2003, 57, 600-606.	2.2	18
209	Real-Time Fourier Transform-Infrared Analysis of Carbon Monoxide and Nitric Oxide in Sidestream Cigarette Smoke. Applied Spectroscopy, 2006, 60, 272-278.	2.2	18
210	Effect of oxidizing atmosphere on ferroelectric and piezoelectric response of CaBi2Nb2O9 thin films. Materials Chemistry and Physics, 2010, 124, 894-899.	4.0	18
211	Editorial The Future of Sensors and Instrumentation for Human Breath Analysis. IEEE Sensors Journal, 2010, 10, 3-6.	4.7	18
212	A mid-infrared sensor for the determination of perfluorocarbon-based compounds in aquatic systems for geosequestration purposes. Talanta, 2014, 130, 527-535.	5.5	18
213	Advanced Evaluation Strategies for Proteinâ€Imprinted Polymer Nanobeads. Macromolecular Bioscience, 2015, 15, 1507-1511.	4.1	18
214	Probing Membrane Fouling via Infrared Attenuated Total Reflection Mapping Coupled with Multivariate Curve Resolution. ChemPhysChem, 2016, 17, 358-363.	2.1	18
215	Sensing hydrocarbons with interband cascade lasers and substrate-integrated hollow waveguides. Analyst, The, 2016, 141, 4432-4437.	3.5	18
216	Electrochemical sensing of nitro-aromatic explosive compounds using silver nanoparticles modified electrochips. Analytical Methods, 2016, 8, 7158-7169.	2.7	18

#	Article	IF	CITATIONS
217	Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics. Analytical Chemistry, 2018, 90, 4445-4451.	6.5	18
218	Chem/bio sensing with non-classical light and integrated photonics. Analyst, The, 2018, 143, 593-605.	3.5	18
219	Advanced Photonic Sensors Based on Interband Cascade Lasers for Real-Time Mouse Breath Analysis. ACS Sensors, 2018, 3, 1743-1749.	7.8	18
220	Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. Journal of Electroanalytical Chemistry, 2022, 909, 116124.	3.8	18
221	Nanoporous Hard Carbon Membranes for Medical Applications. Journal of Nanoscience and Nanotechnology, 2007, 7, 1486-1493.	0.9	17
222	Monitoring Scanning Electrochemical Microscopy Approach Curves with Mid-Infrared Spectroscopy: Toward a Novel Current-Independent Positioning Mode. Analytical Chemistry, 2010, 82, 3132-3138.	6.5	17
223	A mobile instrumentation platform to distinguish airway disorders. Journal of Breath Research, 2013, 7, 017113.	3.0	17
224	The mechanisms of platinum-catalyzed silicon nanowire growth. Semiconductor Science and Technology, 2016, 31, 025005.	2.0	17
225	Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors. Sensors, 2019, 19, 3644.	3.8	17
226	Scanning Probe Microscopy with Integrated Biosensors. Sensor Letters, 2003, 1, 2-15.	0.4	17
227	The automated sample preparation system MixMaster for investigation of volatile organic compounds with mid-infrared evanescent wave spectroscopy. Analyst, The, 2003, 128, 397-403.	3.5	16
228	Generation of Surface Plasmons at Waveguide Surfaces in the Mid-Infrared Region. Plasmonics, 2012, 7, 647-652.	3.4	16
229	Mid-Infrared Planar Silver Halide Waveguides with Integrated Grating Couplers. Applied Spectroscopy, 2013, 67, 1057-1063.	2.2	16
230	Inhibitor-assisted synthesis of silica-core microbeads with pepsin-imprinted nanoshells. Journal of Materials Chemistry B, 2016, 4, 4462-4469.	5.8	16
231	Voltammetric Determination of Valaciclovir Using a Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Electroanalysis, 2017, 29, 1388-1399.	2.9	16
232	FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography. Nanoscale, 2017, 9, 14327-14334.	5.6	16
233	Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 372-382.	2.9	16
234	Synthesis and characterization of porous surface molecularly imprinted silica microsphere for selective extraction of ascorbic acid. Microporous and Mesoporous Materials, 2018, 264, 28-34.	4.4	16

#	Article	IF	Citations
235	Analytical performance of $\hat{l}^{1}\!\!/\!\!4$ -groove silicon attenuated total reflection waveguides. Analyst, The, 2019, 144, 3398-3404.	3.5	16
236	Selective virus capture via hexon imprinting. Materials Science and Engineering C, 2019, 99, 1099-1104.	7.3	16
237	An eNose-based method performing drift correction for online VOC detection under dry and humid conditions. Analytical Methods, 2020, 12, 4724-4733.	2.7	16
238	Solâ^'Gel Processing of Waterâ€Soluble Carbon Nitride Enables Highâ€Performance Photoanodes**. ChemSusChem, 2021, 14, 2170-2179.	6.8	16
239	Exhaled breath analysis using cavity-enhanced optical techniques: a review. Journal of Breath Research, 2020, 14, 043001.	3.0	16
240	Real-Time and Simultaneous Monitoring of NO, NO, and NO Using Substrate-Integrated Hollow Waveguides Coupled to a Compact Fourier Transform Infrared (FT-IR) Spectrometer. Applied Spectroscopy, 2019, 73, 98-103.	2.2	16
241	Sensor head development for mid-infrared fibre-optic underwater sensors. Measurement Science and Technology, 2002, 13, 1294-1303.	2.6	15
242	Chemometric Correction of Drift Effects in Optical Spectra. Applied Spectroscopy, 2004, 58, 683-692.	2.2	15
243	Mid-Infrared Chemical Sensors Utilizing Plasma-Deposited Fluorocarbon Membranes. Analytical Chemistry, 2007, 79, 9566-9571.	6.5	15
244	Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential. Talanta, 2014, 118, 321-327.	5 . 5	15
245	Infrared spectroscopy via substrate-integrated hollow waveguides: a powerful tool in catalysis research. Analyst, The, 2016, 141, 5990-5995.	3.5	15
246	iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides. Analyst, The, 2016, 141, 5298-5303.	3.5	15
247	Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin. Mikrochimica Acta, 2017, 184, 453-462.	5.0	15
248	polyHWG: 3D Printed Substrate-Integrated Hollow Waveguides for Mid-Infrared Gas Sensing. ACS Sensors, 2017, 2, 1700-1705.	7.8	15
249	Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Analytica Chimica Acta, 2022, 1195, 339433.	5. 4	15
250	Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B. Neurosurgical Review, 2022, 45, 1721-1729.	2.4	15
251	Classification of Atherosclerotic Rabbit Aorta Samples with an Infrared Attenuated Total Reflection Catheter and Multivariate Data Analysis. Applied Spectroscopy, 2006, 60, 1121-1126.	2.2	14
252	Developmental aspects of amperometric ATP biosensors based on entrapped enzymes. Analytical and Bioanalytical Chemistry, 2009, 395, 1729-1735.	3.7	14

#	Article	IF	Citations
253	Analytical challenges in nanomedicine. Analytical and Bioanalytical Chemistry, 2011, 399, 2309-2311.	3.7	14
254	Amiloride-sensitive fluid resorption in NCI-H441 lung epithelia depends on an apical Clâ^' conductance. Physiological Reports, 2014, 2, e00201.	1.7	14
255	Surfaceâ€enhanced infrared spectroscopy on boronâ€doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2056-2062.	1.8	14
256	Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vibrational Spectroscopy, 2017, 91, 147-156.	2.2	14
257	Versatile Analytical Platform Based on Graphene-Enhanced Infrared Attenuated Total Reflection Spectroscopy. ACS Photonics, 2018, 5, 2160-2167.	6.6	14
258	Polycrystalline Diamond Thin-Film Waveguides for Mid-Infrared Evanescent Field Sensors. ACS Omega, 2018, 3, 6190-6198.	3.5	14
259	Development and Characterization of Magnetic SARS-CoV-2 Peptide-Imprinted Polymers. Nanomaterials, 2021, 11, 2985.	4.1	14
260	GaAs/AlGaAs quantum cascade laser – a source for gas absorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 37-39.	2.7	13
261	Improved sensitivity and stability of amperometric enzyme microbiosensors by covalent attachment to gold electrodes. Biosensors and Bioelectronics, 2007, 23, 355-361.	10.1	13
262	Wavelength selection for quantum cascade lasers by cavity length. Applied Physics Letters, 2009, 94, 091109.	3.3	13
263	Optimizing the design of GaAs/AlGaAs thin-film waveguides for integrated mid-infrared sensors. Photonics Research, 2016, 4, 106.	7.0	13
264	Mid-infrared GaAs/AlGaAs micro-ring resonators characterized <i>via</i> thermal tuning. RSC Advances, 2019, 9, 8594-8599.	3.6	13
265	Fabrication of Magnetic Molecularly Imprinted Beaded Fibers for Rosmarinic Acid. Nanomaterials, 2020, 10, 1478.	4.1	13
266	NOx Measurements in Vehicle Exhaust Using Advanced Deep ELM Networks. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	13
267	Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors, 2021, 9, 151.	3.6	13
268	Secured PCR (sPCR) for detection and correction of PCR calibration model failures induced by uncalibrated spectral features. Journal of Chemometrics, 2003, 17, 225-236.	1.3	12
269	Combination of a Mid-infrared Hollow Waveguide Gas Sensor with a Supported Capillary Membrane Sampler for the Detection of Organic Compounds in Water. International Journal of Environmental Analytical Chemistry, 2003, 83, 573-583.	3.3	12
270	Quantification of Sugar Mixtures with Near-Infrared Raman Spectroscopy and Multivariate Data Analysis. A Quantitative Analysis Laboratory Experiment. Journal of Chemical Education, 2009, 86, 1322.	2.3	12

#	Article	IF	CITATIONS
271	A novel approach for the direct determination of residual template molecules in molecularly imprinted polymer matrices. Analytical Methods, 2012, 4, 2755.	2.7	12
272	Impact of Glycosylation and Species Origin on the Uptake and Permeation of IgGs through the Nasal Airway Mucosa. Pharmaceutics, 2020, 12, 1014.	4.5	12
273	Molecularly imprinted materials for biomedical sensing. Medical Devices & Sensors, 2021, 4, e10166.	2.7	12
274	Plastic Antibodies Mimicking the ACE2 Receptor for Selective Binding of SARSâ€CoVâ€2 Spike. Advanced Materials Interfaces, 2022, 9, 2101925.	3.7	12
275	Stimulated Raman histology in the neurosurgical workflow of a major European neurosurgical center — part A. Neurosurgical Review, 2022, 45, 1731-1739.	2.4	12
276	Selective polymer materials: absolute determination of their sorption properties. , 2001, , .		11
277	Molecularly Imprinted Polymers for Biomolecular Recognition. , 2005, 300, 243-254.		11
278	Shining New Light on Old Principles: Localization of Evanescent Field Interactions at Infrared—Attenuated Total Reflection Sensing Interfaces. Applied Spectroscopy, 2006, 60, 573-583.	2.2	11
279	Near-Infrared Hollow Waveguide Gas Sensors. Applied Spectroscopy, 2011, 65, 1269-1274.	2.2	11
280	Infrared spectroscopic monitoring of surface effects during gas hydrate formation in the presence of detergents. Chemical Engineering Science, 2011, 66, 5497-5503.	3.8	11
281	Toward on-chip mid-infrared chem/bio sensors using quantum cascade lasers and substrate-integrated semiconductor waveguides. Proceedings of SPIE, 2013, , .	0.8	11
282	muciPRECON: multichannel preconcentrators for portable mid-infrared hydrocarbon gas sensors. Analytical Methods, 2016, 8, 6645-6650.	2.7	11
283	Observing non-classical crystallisation processes in gypsum via infrared attenuated total reflectance spectroscopy. CrystEngComm, 2017, 19, 14-17.	2.6	11
284	Understanding the viral load during the synthesis and after rebinding of virus imprinted particles <i>via</i> real-time quantitative PCR. Analyst, The, 2018, 143, 2616-2622.	3.5	11
285	A Hyphenated Preconcentrator-Infrared-Hollow-Waveguide Sensor System for N2O Sensing. Scientific Reports, 2018, 8, 5909.	3.3	11
286	Portable combination of Fourier transform infrared spectroscopy and differential mobility spectrometry for advanced vapor phase analysis. Analyst, The, 2018, 143, 5683-5691.	3.5	11
287	Characterisation of thin boron-doped diamond films using Raman spectroscopy and chemometrics. Analytical Methods, 2019, 11, 582-586.	2.7	11
288	Quantitative Analysis of Gas Phase IR Spectra Based on Extreme Learning Machine Regression Model. Sensors, 2019, 19, 5535.	3.8	11

#	Article	IF	Citations
289	Efficient Extraction of Pyrrolizidine Alkaloids from Plants by Pressurised Liquid Extraction – A Preliminary Study. Planta Medica, 2020, 86, 85-90.	1.3	11
290	Monitoring Ozone Using Portable Substrate-Integrated Hollow Waveguide-Based Absorbance Sensors in the Ultraviolet Range. ACS Measurement Science Au, 2022, 2, 39-45.	4.4	11
291	<title>Mid-infrared fiber optic sensors: potential and perspectives</title> ., 1999,,.		10
292	Simultane topographische und elektrochemische Abbildung von EnzymaktivitĤmit integrierten AFM-SECM-Rasternahfeldsonden im AFM-Tapping-Modus. Angewandte Chemie, 2003, 115, 3358-3360.	2.0	10
293	Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis. Journal of Biomedical Optics, 2007, 12, 024006.	2.6	10
294	Properties of DLC and Nitrogen-Doped DLC Films Deposited by DC Magnetron Sputtering. Plasma Processes and Polymers, 2007, 4, S200-S204.	3.0	10
295	The interference of HEPES buffer during amperometric detection of ATP in clinical applications. Analytical and Bioanalytical Chemistry, 2008, 390, 2067-2071.	3.7	10
296	Theory of polymer entrapped enzyme ultramicroelectrodes: Fundamentals. Journal of Electroanalytical Chemistry, 2008, 612, 208-218.	3.8	10
297	Improving the performance of hollow waveguide-based infrared gas sensors via tailored chemometrics. Analytical and Bioanalytical Chemistry, 2013, 405, 8223-8232.	3.7	10
298	Electrochemical Determination of Sulphurâ€containing Pharmaceuticals Using Boronâ€doped Diamond Electrodes. Electroanalysis, 2016, 28, 1641-1646.	2.9	10
299	Selecting the Right Tool: Comparison of the Analytical Performance of Infrared Attenuated Total Reflection Accessories. Applied Spectroscopy, 2016, 70, 1072-1079.	2.2	10
300	Simultaneous quantification of ion pairs in water via infrared attenuated total reflection spectroscopy. Analytical Methods, 2016, 8, 2164-2169.	2.7	10
301	Infrared spectroscopy on the role of surfactants during methane hydrate formation. RSC Advances, 2017, 7, 39109-39117.	3.6	10
302	Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method. Physical Chemistry Chemical Physics, 2017, 19, 17985-17997.	2.8	10
303	Synthesis of surface imprinted core–shell nanospheres for the selective determination of asparaginase. Analytical Methods, 2019, 11, 4034-4043.	2.7	10
304	Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy. World Mycotoxin Journal, 2019, 12, 113-122.	1.4	10
305	Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. Human Gene Therapy Methods, 2019, 30, 235-244.	2.1	10
306	Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution. Analytical and Bioanalytical Chemistry, 2019, 411, 1863-1871.	3.7	10

#	Article	lF	CITATIONS
307	Characterization of metal oxide gas sensors via optical techniques. Analytical and Bioanalytical Chemistry, 2020, 412, 4575-4584.	3.7	10
308	Surface-enhanced infrared absorption spectroscopy using silver selenide quantum dots. Journal of Materials Chemistry C, 2020, 8, 10448-10455.	5. 5	10
309	Direct infrared spectroscopy for the size-independent identification and quantification of respirable particles relative mass in mine dusts. Analytical and Bioanalytical Chemistry, 2020, 412, 3499-3508.	3.7	10
310	Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst. Chemical Science, 2021, 12, 12918-12927.	7.4	10
311	Lysine-Functionalized Tungsten Disulfide Quantum Dots as Artificial Enzyme Mimics for Oxidative Stress Biomarker Sensing. ACS Omega, 2020, 5, 1927-1937.	3.5	10
312	Toward Theorectical Limits of FT-IR Microspectroscopy for Ultra-Thin Organic Layers. Applied Spectroscopy, 1993, 47, 1476-1483.	2.2	9
313	<title>Numerical methods for accelerating the PCA of large data sets applied to hyperspectral imaging</title> ., 2002, , .		9
314	Optimizing Gas Sensors Based on Quantum Cascade Lasers and Photonic Bandgap Hollow Waveguides. , 2007, , .		9
315	lon beam induced deposition of platinum carbon composite electrodes for combined atomic force microscopy–scanning electrochemical microscopy. Electrochemistry Communications, 2010, 12, 989-991.	4.7	9
316	Response-surface fits and calibration transfer for the correction of the oxygen effect in the quantification of carbon dioxide via FTIR spectroscopy. Analytica Chimica Acta, 2017, 972, 16-27.	5.4	9
317	Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling. Analytica Chimica Acta, 2017, 951, 32-45.	5.4	9
318	Mid-infrared sensor for hydrocarbon monitoring: the influence of salinity, matrix and aging on hydrocarbon–polymer partitioning. Analytical Methods, 2018, 10, 1516-1522.	2.7	9
319	Efficient prediction of suitable functional monomers for molecular imprinting <i>via < /i>local density of states calculations. Physical Chemistry Chemical Physics, 2018, 20, 13153-13158.</i>	2.8	9
320	From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review. ACS Measurement Science Au, 2021, 1, 97-109.	4.4	9
321	Preprocessing Strategies for Sparse Infrared Spectroscopy: A Case Study on Cartilage Diagnostics. Molecules, 2022, 27, 873.	3.8	9
322	Fiber optic evanescent field sensors for gaseous species using MIR transparent fibers. Fresenius' Journal of Analytical Chemistry, 1994, 348, 556-559.	1.5	8
323	<title>Optimized sensitive coatings for MIR fiber optic sensors</title> ., 1997, 3105, 283.		8
324	Online sensing of volatile organic compounds in groundwater using mid-infrared fibre optic evanescent wave spectroscopy: a pilot scale test. Water Science and Technology, 2003, 47, 121-126.	2.5	8

#	Article	IF	Citations
325	An approach to the spectral simulation of infrared hollow waveguide gas sensors. Analytical and Bioanalytical Chemistry, 2009, 395, 1661-1671.	3.7	8
326	Ethylene gas sensing using non-dispersive infrared spectroscopy. , 2016, , .		8
327	Inhibitor-assisted synthesis of molecularly imprinted microbeads for protein recognition. Analytical Methods, 2018, 10, 997-1005.	2.7	8
328	A Novel Modular System for Breath Analysis Using Temperature Modulated MOX Sensors. Proceedings (mdpi), 2019, 14, .	0.2	8
329	Exploration of a Molecularly Imprinted Polymer (MIPs) as an Adsorbent for the Enrichment of Trenbolone in Water. Processes, 2021, 9, 186.	2.8	8
330	Infrared Spectroscopy in Aqueous Solutions: Capabilities and Challenges. Critical Reviews in Analytical Chemistry, 2023, 53, 1748-1765.	3.5	8
331	Boosting Efficiency in Lightâ€Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**. ChemSusChem, 2022, 15, .	6.8	8
332	Fault-tolerant spectroscopic data evaluation based on extended principal component regression correcting for spectral drifts and uncalibrated spectral features. Journal of Chemometrics, 2003, 17, 660-665.	1.3	7
333	Detection of cold seep derived authigenic carbonates with infrared spectroscopy. Marine Chemistry, 2011, 125, 8-18.	2.3	7
334	Combined sensing platform for advanced diagnostics in exhaled mouse breath., 2013,,.		7
335	Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes. Electrochimica Acta, 2014, 130, 418-425.	5.2	7
336	Multi-walled carbon nanotubes: innovative sorbents for pre-concentration of polychlorinated biphenyls in aqueous environments. Analytical Methods, 2015, 7, 8034-8040.	2.7	7
337	Detection of Metalâ€reducing Enzyme Complexes by Scanning Electrochemical Microscopy. Electroanalysis, 2016, 28, 2459-2465.	2.9	7
338	Simultaneous Determination of Monoatomic Ions via Infrared Attenuated Total Reflection Spectroscopy in Aqueous Solution at Different Temperatures. Applied Spectroscopy, 2016, 70, 1214-1227.	2.2	7
339	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	2.5	7
340	Online monitoring of carbon dioxide and oxygen in exhaled mouse breath via substrate-integrated hollow waveguide Fourier-transform infrared-luminescence spectroscopy. Journal of Breath Research, 2018, 12, 036018.	3.0	7
341	A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis. Proceedings (mdpi), 2018, 2, .	0.2	7
342	Selective Binding of Inhibitorâ€Assisted Surfaceâ€Imprinted Core/Shell Microbeads in Protein Mixtures. ChemistrySelect, 2018, 3, 4277-4282.	1.5	7

#	Article	IF	CITATIONS
343	Enhanced Adsorptive Removal of \hat{l}^2 -Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism. Processes, 2020, 8, 1197.	2.8	7
344	Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors, 2020, 8, 75.	3.6	7
345	Complexity of Respirable Dust Found in Mining Operations as Characterized by X-ray Diffraction and FTIR Analysis. Minerals (Basel, Switzerland), 2021, 11, 383.	2.0	7
346	Bitmap-Assisted Focused Ion Beam Fabrication of Combined Atomic Force Scanning Electrochemical Microscopy Probes. Journal of the Korean Physical Society, 2007, 51, 920.	0.7	7
347	Molecularly imprinted conducting polymer based sensor for Salmonella typhimurium detection. Bioelectrochemistry, 2022, 147, 108211.	4.6	7
348	FTIR-microspectroscopic investigation of chemisorbed silanes on IR-transparent materials. Fresenius' Journal of Analytical Chemistry, 1993, 346, 355-357.	1.5	6
349	Integrating an Ultramicroelectrode in an AFM Cantilever: Toward the Development of Combined Microsensing Imaging Tools. ACS Symposium Series, 2002, , 320-333.	0.5	6
350	Hollow Waveguide Infrared Spectroscopy and Sensing. , 2005, , 133-167.		6
351	Quantification of adamantane in organic media via infrared attenuated total reflection spectroscopy. Organic Geochemistry, 2009, 40, 1143-1150.	1.8	6
352	Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region. Proceedings of SPIE, 2013, , .	0.8	6
353	Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis. Applied Physics Letters, 2014, 105, 153110.	3.3	6
354	Gas phase silanization for silicon nanowire sensors and other lab-on-a-chip systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 135-141.	0.8	6
355	Hybrid Analytical Platform Based on Field-Asymmetric Ion Mobility Spectrometry, Infrared Sensing, and Luminescence-Based Oxygen Sensing for Exhaled Breath Analysis. Sensors, 2019, 19, 2653.	3.8	6
356	Corrosion Detection by Infrared Attenuated Total Reflection Spectroscopy via Diamond-Like Carbon-Coated Silicon Wafers and Iron-Sensitive Dyes. Sensors, 2019, 19, 3373.	3.8	6
357	Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules, 2022, 27, 248.	3.8	6
358	Simultaneous Infrared Spectroscopy, Raman Spectroscopy, and Luminescence Sensing: A Multispectroscopic Analytical Platform. ACS Measurement Science Au, 2022, 2, 157-166.	4.4	6
359	Continuous surface enhanced Raman spectroscopy for the detection of trace organic pollutants in aqueous systems. Journal of Molecular Structure, 1997, 410-411, 539-542.	3.6	5
360	Nanoelectrodes Integrated in Atomic Force Microscopy Cantilevers for Imaging of <i>In Situ</i> Enzyme Activity., 2005, 300, 403-416.		5

#	Article	IF	Citations
361	Modeling the Response Function of Dual-Enzyme Microbiosensors. Analytical Chemistry, 2007, 79, 8531-8538.	6.5	5
362	Synthesis of stationary phases that provide group recognition for polychlorinated biphenyls by porogenic fragment template imprinting. Journal of Separation Science, 2016, 39, 939-946.	2.5	5
363	Analysis of human menisci degeneration <i>via</i> infrared attenuated total reflection spectroscopy. Analyst, The, 2018, 143, 5023-5029.	3.5	5
364	Selective Chemical Enhancement via Graphene Oxide in Infrared Attenuated Total Reflection Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 25286-25293.	3.1	5
365	Hybrid Gold Nanoparticle–Polyoxovanadate Matrices: A Novel Surface Enhanced Raman/Surface Enhanced Infrared Spectroscopy Substrate. ACS Omega, 2020, 5, 25036-25041.	3.5	5
366	Metabolic monitoring via on-line analysis of ¹³ C-enriched carbon dioxide in exhaled mouse breath using substrate-integrated hollow waveguide infrared spectroscopy and luminescence sensing combined with Bayesian sampling. Journal of Breath Research, 2021, 15, 026013.	3.0	5
367	Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers. , 2018, , .		5
368	Infrared optical sensors for water quality monitoring. Water Science and Technology, 2003, 47, 35-42.	2.5	5
369	Innovative Substrate-Integrated Hollow Waveguide Coupled Attenuated Total Reflection Sensors for Quantum Cascade Laser Based Infrared Spectroscopy in Harsh Environments. Applied Spectroscopy, 2022, 76, 132-140.	2.2	5
370	Silver-fluoropolymer (Ag-CFX) films: Kinetic study of silver release, and spectroscopic-microscopic insight into the inhibition of P. fluorescens biofilm formation. Analytica Chimica Acta, 2022, 1212, 339892.	5.4	5
371	FTIR-Microspectroscopic detection of ultra-thin organic films on chalcogenide fibers. Fresenius' Journal of Analytical Chemistry, 1993, 346, 612-614.	1.5	4
372	<title>Optimized configurations for mid-infrared fiber optic sensors in the marine environment</title> ., 1999, 3849, 28.		4
373	<title>Mid-infrared sensors for marine monitoring</title> ., 2001,,.		4
374	<title>Recent developments in liquid phase mid-infrared sensor technology</title> ., 2002, 4616, 1.		4
375	Towards analysis of mykotoxins in beverages with molecularly imprinted polymers for deoxynivalenol and zearalenone. Mycotoxin Research, 2002, 18, 89-93.	2.3	4
376	Frequency Drift Compensation in Mass-Sensitive Chemical Sensors based on Periodic Stiffness Modulation., 2009,,.		4
377	A strategy for high-throughput screening of ligands suitable for molecular imprinting of proteins. Biosensors and Bioelectronics, 2012, 35, 27-32.	10.1	4
378	Microscopic Techniques for the Characterization of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, , 257-299.	1.3	4

#	Article	IF	Citations
379	Position Dependent Plasmonic Interaction Between a Single Nanoparticle and a Nanohole Array. Plasmonics, 2014, 9, 1229-1237.	3.4	4
380	An alternative clean-up column for the determination of polychlorinated biphenyls in solid matrices. Environmental Sciences: Processes and Impacts, 2015, 17, 2101-2109.	3.5	4
381	In situ monitoring of additives during CO ₂ gas hydrate formation. Analytical Methods, 2016, 8, 5897-5905.	2.7	4
382	Macroscopic and microscopic electrochemical investigation of Clostridium botulinum C2IIa embedded in supported lipid membranes. Electrochimica Acta, 2016, 209, 341-349.	5.2	4
383	Mid-infrared fiber-optic evanescent field spectroscopy for in situ monitoring of tetrahydrofuran hydrate formation and dissociation. Analyst, The, 2017, 142, 740-744.	3.5	4
384	Selective Navigation of Bisphenolâ€A from Water to a Polarity Tuned Porous Molecularly Imprinted Polymer. ChemistrySelect, 2018, 3, 12223-12233.	1.5	4
385	Selective binding of matrix metalloproteases MMP-9 and MMP-12 to inhibitor-assisted thermolysin-imprinted beads. RSC Advances, 2018, 8, 32387-32394.	3.6	4
386	Horizontal black lipid bilayer membranes for studying pore-forming toxins. Analytical Methods, 2018, 10, 3153-3161.	2.7	4
387	Core Imprinting: An Alternative and Economic Approach for Depleting Pyrrolizidine Alkaloids in Herbal Extracts. Planta Medica International Open, 2020, 7, e26-e33.	0.5	4
388	A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2021, 75, 307-316.	2,2	4
389	Modular Breath Analyzer (MBA): Introduction of a Breath Analyzer Platform Based on an Innovative and Unique, Modular eNose Concept for Breath Diagnostics and Utilization of Calibration Transfer Methods in Breath Analysis Studies. Molecules, 2021, 26, 3776.	3.8	4
390	Spectral Signatures of Oxidation States in a Manganeseâ€Oxo Cubane Water Oxidation Catalyst. Chemistry - A European Journal, 2021, 27, 17078-17086.	3.3	4
391	iBEAM: substrate-integrated hollow waveguides for efficient laser beam combining. Optics Express, 2019, 27, 23059.	3.4	4
392	An <i>in silico</i> predictive method to select multi-monomer combinations for peptide imprinting. Journal of Materials Chemistry B, 2022, 10, 6618-6626.	5.8	4
393	Analysis of sugars and sweeteners <i>via</i> terahertz time-domain spectroscopy. Analytical Methods, 2022, 14, 2657-2664.	2.7	4
394	Technical elements and potential application of spectroscopy for ocean monitoring. , 0, , .		3
395	The influence of wetting and drying cycles on mid-infrared attenuated total-reflection spectra of quartz: understanding spectroscopy of disturbed soil. , 2004, , .		3
396	Trace Sensing with Miniaturized Mid-Infrared Sensors. , 2006, , .		3

#	Article	IF	Citations
397	Theory of polymer-entrapped enzyme ultramicroelectrodes: Application to glucose and adenosine triphosphate detection. Journal of Electroanalytical Chemistry, 2008, 618, 74-82.	3.8	3
398	Gas and liquid phase sensing of volatile organics with disk microresonator. , 2008, , .		3
399	Development of a Selective Adsorbing Material for Binding of Pyrrolizidine Alkaloids in Herbal Extracts, Based on Molecular Group Imprinting. Planta Medica, 2019, 85, 1107-1113.	1.3	3
400	Surface Imprinted Micro- and Nanoparticles. Comprehensive Analytical Chemistry, 2019, , 153-191.	1.3	3
401	Surface analysis of sheep menisci after meniscectomy via infrared attenuated total reflection spectroscopy. Journal of Biophotonics, 2019, 12, e201800429.	2.3	3
402	Monitoring Corrosion Processes via Visible Fiber-Optic Evanescent Wave Sensor. Chemosensors, 2020, 8, 76.	3.6	3
403	Can UVA-light-activated riboflavin-induced collagen crosslinking be transferred from ophthalmology to spine surgery? A feasibility study on bovine intervertebral disc. PLoS ONE, 2021, 16, e0252672.	2.5	3
404	A facile route toward hydrophilic plasmonic copper selenide nanocrystals: new perspectives for SEIRA applications. New Journal of Chemistry, 2021, 45, 15753-15760.	2.8	3
405	Amperometric Microbiosensors Based on PQQ-Dependent Glucose Dehydrogenase towards the Development of an ATP Biosensor for in vitro Analysis. IFMBE Proceedings, 2009, , 351-354.	0.3	3
406	Towards the direct detection of viral materials at the surface of protective face masks via infrared spectroscopy. Scientific Reports, 2022, 12, 2309.	3.3	3
407	Development of Silica Nanoparticle Supported Imprinted Polymers for Selective Lysozyme Recognition. Nanomaterials, 2021, 11, 3287.	4.1	3
408	A miniaturised Fourier-transform infrared spectrometer for seawater monitoring. , 0, , .		2
409	Current applications and new trends in mid-infrared sensor technology and integrated scanning probe sensors. , 0, , .		2
410	Characterization of parylene coated combined scanning probe tips for in-situ electrochemical and topographical imaging. , 0, , .		2
411	Hollow waveguide infrared gas sensing for biomedical applications. , 2003, 4957, 116.		2
412	Impact of shallow buried objects on the spectral properties of terrain features., 2003,,.		2
413	Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis. , 2007, , .		2
414	Silanization of Sapphire Surfaces for Optical Sensing Applications. ACS Sensors, 2017, 2, 522-530.	7.8	2

#	Article	IF	CITATIONS
415	Diamond Waveguides for Infrared Spectroscopy and Sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 87-117.	0.5	2
416	Strategies for 13C enrichment calculation in Fourier-transform infrared CO2 spectra containing spectral overlapping and nonlinear abundance-amount relations utilizing response surface fits. Analytica Chimica Acta, 2020, 1095, 48-60.	5.4	2
417	Infrared attenuated total reflection spectroscopic surface analysis of bovineâ€tail intervertebral discs after UV â€lightâ€activated riboflavinâ€induced collagen crossâ€linking. Journal of Biophotonics, 2020, 13, e202000110.	2.3	2
418	Gallium arsenide waveguides as a platform for direct mid-infrared vibrational spectroscopy. Analytical and Bioanalytical Chemistry, 2020, 412, 3447-3456.	3.7	2
419	Autologous platelet-rich fibrin (PRF) augmentation as an add-on therapy in deep surgical site infections (dSSIs) after instrumented spinal surgery: preliminary results of a single institution case series. Acta Neurochirurgica, 2021, 163, 2761-2767.	1.7	2
420	Infrared spectroscopy is suitable for objective assessment of articular cartilage health. Osteoarthritis and Cartilage Open, 2022, 4, 100250.	2.0	2
421	Fourier transform infrared microscopy of organic monolayers in transmission. , 1994, 2089, 164.		1
422	Water monitoring using infrared fiber optic sensors. , 0, , .		1
423	<title>Gas absorption spectroscopy using GaAs/AlGaAs quantum cascade lasers and a hollow waveguide absorption cell</title> ., 2001,,.		1
424	Interfacing chemistry with microdevices: Potential and challenges of chemical microsensors. , 0, , .		1
425	Amperometric biosensors and potentiometric pH-microsensors integrated into AFM tips. , 0, , .		1
426	Molecularly Imprinted Polymersâ€"Potential and Challenges in Analytical Chemistry. ChemInform, 2005, 36, no.	0.0	1
427	Surface Customized Optical Microresonator Sensors for Integrated Chip-Scale Portable Sensing Applications., 2007,,.		1
428	Surface Plasmon Polariton-based Coaxial Probe for Terahertz Near-field Microscopy. , 2007, , .		1
429	Optical Microring Resonator Sensors with Selective Membrane Surface Customization. , 2007, , .		1
430	Selective Recognition of Bile Acids by Molecular Imprints. , 2007, , .		1
431	Investigation of the anion uptake properties of cathodically electropolymerized poly(4-vinylpyridine) membranes. New Journal of Chemistry, 2012, 36, 2460.	2.8	1
432	Editorial – Analytical Sciences in Brazil. Analyst, The, 2014, 139, 4399.	3.5	1

#	Article	IF	CITATIONS
433	Editorial – analysis in gases and liquids using quantum cascade lasers. Analyst, The, 2014, 139, 2038.	3 . 5	1
434	A closer look at the surface modification of silicon nanowire sensors. , 2015, , .		1
435	c -plane ZnO on a -plane sapphire: inclusion of (<mml:math) 0.784314="" 1="" 10="" 1f="" 50="" 677<="" etqq1="" ij="" overlock="" rgbt="" td=""><td>1d (xmins:</td><td>mmi="http://</td></mml:math)>	1d (xmins:	mmi="http://
436	domains, Journal of Crystal Growth, 2015, 419, 128-132. Optimizing the Analytical Performance of Substrate-Integrated Hollow Waveguides: Experiment and Simulation. Applied Spectroscopy, 2019, 73, 1451-1460.	2.2	1
437	Combined Scanning Probe Techniques for In-Situ Electrochemical Imaging at a Nanoscale. Nanoscience and Technology, 2007, , 225-267.	1.5	1
438	Combined AFM-SECM: Towards a novel platform for imaging microbiosensors. IFMBE Proceedings, 2009, , 372-375.	0.3	1
439	Breath analysis as a method for breast cancer early detection. Journal of Clinical Oncology, 2008, 26, 1522-1522.	1.6	1
440	Preclassification of Broadband and Sparse Infrared Data by Multiplicative Signal Correction Approach. Molecules, 2022, 27, 2298.	3.8	1
441	Core-Shell Imprinted Particles for Adenovirus Binding. Materials, 2021, 14, 7692.	2.9	1
442	Overview on VOGAS: an instrument combining two gas sensing techniques for disease diagnosis. , 2022, , .		1
443	Numerical Simulation of IR-Spectroscopic Experiments. , 1997, , 283-285.		0
444	<title>Recent trends in mid-infrared sensing</title> .,2001,,.		0
445	Mid-Infrared Spectroscopic Sensors for In-Situ Monitoring of Methane Dissolved in Sea Water. , 2003, , .		0
446	Matrix Assisted Pulsed Laser Evaporation of Poly (D, L) Lactic Acid Films. Materials Research Society Symposia Proceedings, 2004, 845, 258.	0.1	0
447	Phenomenological investigations for understanding spectral and polarimetric signatures of landmines., 2004, 5415, 230.		0
448	Integrated planar silver halide waveguides and quantum cascade lasers for liquid phase chemical sensing. , 0, , .		0
449	Development and Fabrication of Multifunctional Scanning Probes and Sensors with Focused Ion Beam Techniques. Microscopy and Microanalysis, 2004, 10, 144-145.	0.4	0
450	Combination of AFM with IR-ATR spectroscopy for measurements in liquid environment., 2005,,.		0

#	Article	IF	CITATIONS
451	A Novel Approach for Batch Fabrication of Bifunctional AFM-SECM Probes., 2005,, 383.		O
452	Spectroelectrochemical Characterization and Application of Multireflection IR-ATR Waveguides coated with IR-transparent Doped DLC Electrodes. ECS Meeting Abstracts, 2005, , .	0.0	0
453	Laterally Resolved Detection of Biomedically and Biologically Relevant Analytes. ECS Meeting Abstracts, 2006, , .	0.0	0
454	Amperometric Microbiosensors for Studying ATP at the Carotid Body. , 2007, , .		0
455	Molecular Imprinting of Oxybutynin. ECS Meeting Abstracts, 2009, , .	0.0	0
456	Toward a Combined SECM-IR-ATR System For the Investigation of Conductive Polymers. ECS Transactions, 2009, 19, 165-169.	0.5	0
457	Effect of polymer thickness on the chemical sensing behavior of polymer-coated mass-sensitive disk resonators. , 2011, , .		0
458	Analytische Chemie 2010/2011. Nachrichten Aus Der Chemie, 2012, 60, 406-420.	0.0	0
459	Editorial Board profiles. Analyst, The, 2012, 137, 21-23.	3.5	0
460	Thin-film mid-infrared semiconductor waveguide technology. , 2014, , .		0
461	Dünnschicht-Lichtwellenleiter für das mittlere Infrarot. Nachrichten Aus Der Chemie, 2016, 64, 127-130.	0.0	0
462	Nanomaterials: Characterization Methods. , 2018, , 98-98.		0
463	Infrared attenuated total reflection and 2D fluorescence spectroscopy for the discrimination of differently aggregated monoclonal antibodies. Analyst, The, 2019, 144, 6334-6341.	3.5	0
464	On-Chip Infrared Sensor Technologies for Chem/Bio Diagnostics: Quo Vadis?., 2019,,.		0
465	Segregation of respirable dust for chemical and toxicological analyses. Archives of Environmental and Occupational Health, 2021, 76, 134-144.	1.4	0
466	Enhancing Wavelength Selection for Quantum Cascade Laser Based Chemical Sensors by Cavity Length Variation., 2009,,.		0
467	Application of Sapphire Fibres to IR Fibre-optic Evanescent Field Gas Sensors. , 1997, , 833-835.		0
468	Infrared On-Ch ip Photonics: Towards Precision Biodiagnostics. , 2018, , .		0

#	Article	IF	CITATIONS
469	Graphene-Enhanced Spectro-Electrochemistry on Boron-Doped Diamond Waveguides. ECS Meeting Abstracts, 2019, , .	0.0	0
470	Plastic Antibodies Mimicking the ACE2 Receptor for Selective Binding of SARS oVâ€2 Spike (Adv. Mater.) Tj E	TQ ₉ 9 0 0	rgBT /Overloo
471	Hollow Waveguide Infrared Spectroscopy and Sensing. , 2005, , 133-167.		0
472	A streamlined method for the fast and cost-effective detection of bacterial pathogens from positive blood cultures for the BacT/ALERT blood culture system using the Vitek MS mass spectrometer. PLoS ONE, 2022, 17, e0267669.	2.5	0
473	Frontiers in Volatile Organic Compound Exhaled Breath Sensing. , 2022, , .		O