Tianyu Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5068089/publications.pdf Version: 2024-02-01

Τιλινιι Υε

#	Article	IF	CITATIONS
1	Semiquantum private comparison of size relationship based on <italic>d</italic> -level single-particle states. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, 52, 290311.	0.4	10
2	Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Information Processing, 2022, 21, 1.	2.2	16
3	Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Information Processing, 2022, 21, 1.	2.2	31
4	Three-Party Secure Semiquantum Summation without Entanglement Among Quantum User and Classical Users. International Journal of Theoretical Physics, 2022, 61, .	1.2	6
5	Multi-Party Quantum Private Comparison Based on Entanglement Swapping of Bell Entangled States within d-Level Quantum System. International Journal of Theoretical Physics, 2021, 60, 1471-1480.	1.2	11
6	Quantum Secure Multiparty Summation Based on the Phase Shifting Operation of d-Level Quantum System and its Application. International Journal of Theoretical Physics, 2021, 60, 819-827.	1.2	11
7	Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Information Processing, 2021, 20, 1.	2.2	17
8	Quantum dialogue based on quantum encryption with single photons in both polarization and spatial-modedegrees of freedom. Scientia Sinica: Physica, Mechanica Et Astronomica, 2021, 51, 100311.	0.4	0
9	Quantum secure multiparty summation based on the mutually unbiased bases of <italic>d</italic> -level quantum systems and its application. Scientia Sinica: Physica, Mechanica Et Astronomica, 2021, 51, 020301.	0.4	3
10	Multi-User Quantum Private Query Protocol. International Journal of Theoretical Physics, 2020, 59, 2867-2874.	1.2	7
11	Semi-Quantum Private Query Protocol Without Invoking the Measurement Capability of Classical User. International Journal of Theoretical Physics, 2020, 59, 2044-2051.	1.2	3
12	An Improvement of Quantum Prisoners' Dilemma Protocol of Eisert-Wilkens-Lewenstein. International Journal of Theoretical Physics, 2020, 59, 1382-1395.	1.2	0
13	Semi-Quantum Key Distribution with Single Photons in both Polarization and Spatial-Mode Degrees of Freedom. International Journal of Theoretical Physics, 2020, 59, 2807-2815.	1.2	32
14	Multiparty Semi-Quantum Secret Sharing with d-Level Single-Particle States. International Journal of Theoretical Physics, 2019, 58, 3797-3814.	1.2	7
15	Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States. International Journal of Theoretical Physics, 2019, 58, 1282-1294.	1.2	30
16	Secure multi-party quantum summation based on quantum Fourier transform. Quantum Information Processing, 2018, 17, 1.	2.2	42
17	Semi-quantum Dialogue Based on Single Photons. International Journal of Theoretical Physics, 2018, 57, 1440-1454.	1.2	34
18	Circular Semi-Quantum Secret Sharing Using Single Particles. Communications in Theoretical Physics, 2018, 70, 661.	2.5	23

Τιάννυ Υε

#	Article	IF	CITATIONS
19	Measure-Resend Semi-Quantum Private Comparison Without Entanglement. International Journal of Theoretical Physics, 2018, 57, 3819-3834.	1.2	57
20	Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Information Processing, 2018, 17, 1.	2.2	30
21	Two-Party Quantum Private Comparison with Five-Qubit Entangled States. International Journal of Theoretical Physics, 2017, 56, 1517-1529.	1.2	47
22	Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Information Processing, 2017, 16, 1.	2.2	45
23	Cryptanalysis and Improvement for the Quantum Private Comparison Protocol Based on Triplet Entangled State and Single-Particle Measurement. International Journal of Theoretical Physics, 2017, 56, 771-780.	1.2	5
24	Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	28
25	Quantum Private Comparison via Cavity QED. Communications in Theoretical Physics, 2017, 67, 147.	2.5	37
26	Fourier phase inheritance rate. , 2017, , .		1
27	Quantum Private Comparison of Equal Information Based on Highly Entangled Six-Qubit Genuine State. Communications in Theoretical Physics, 2016, 65, 711-715.	2.5	49
28	Multi-Party Quantum Private Comparison Protocol Based on Entanglement Swapping of Bell Entangled States. Communications in Theoretical Physics, 2016, 66, 280-290.	2.5	22
29	Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants. International Journal of Theoretical Physics, 2016, 55, 867-874.	1.2	1
30	Secure Quantum Dialogue via Cavity QED. International Journal of Theoretical Physics, 2015, 54, 772-779.	1.2	4
31	Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Information Processing, 2015, 14, 1469-1486.	2.2	33
32	Analysis on Security Loophole of Two-Step Efficient Quantum Dialogue with Three-Particle Entangled W State. International Journal of Theoretical Physics, 2015, 54, 1775-1778.	1.2	3
33	A Kind of Quantum Dialogue Protocols Without Information Leakage Assisted by Auxiliary Quantum Operation. International Journal of Theoretical Physics, 2015, 54, 2494-2504.	1.2	8
34	Fault tolerant channel-encrypting quantum dialogue against collective noise. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-10.	5.1	11
35	Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Information Processing, 2015, 14, 3499-3514.	2.2	34
36	Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Information Processing, 2015, 14, 1487-1499.	2.2	26

Τιάννυ Υε

#	Article	IF	CITATIONS
37	Fault-Tolerant Quantum Dialogue Without Information Leakage Based on Entanglement Swapping between Two Logical Bell States*. Communications in Theoretical Physics, 2015, 63, 431-438.	2.5	10
38	Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 040301-040301.	0.4	28
39	Robust quantum dialogue based on logical qubits and controlled-not operations. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 030301-030301.	0.4	3
40	Robust quantum dialogue based on the measurement correlation of three-qubit entangled states over collective noise channels. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 050301-050301.	0.4	1
41	Quantum dialogue without information leakage based on single photons or logical qubits. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 060301-060301.	0.4	0
42	Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Physica Scripta, 2014, 89, 015103.	2.5	38
43	Quantum Secure Dialogue with Quantum Encryption. Communications in Theoretical Physics, 2014, 62, 338-342.	2.5	26
44	Information leakage resistant quantum dialogue against collective noise. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2266-2275.	5.1	30
45	Solution to Information Leakage in a Quantum Network System of QSS-QDC Using χ-Type Entangled States. International Journal of Theoretical Physics, 2014, 53, 1717-1722.	1.2	0
46	Quantum Dialogue Without Information Leakage Using a Single Quantum Entangled State. International Journal of Theoretical Physics, 2014, 53, 3719-3727.	1.2	25
47	ENTANGLEMENT CRITERION FOR COHERENT SUBTRACTION AND COHERENT ADDITION OF BIPARTITE CONTINUOUS VARIABLE STATES. International Journal of Quantum Information, 2013, 11, 1350060.	1.1	0
48	LARGE PAYLOAD BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION WITHOUT INFORMATION LEAKAGE. International Journal of Quantum Information, 2013, 11, 1350051.	1.1	29
49	Reply to the Comment on "Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State" [Chin. Phys. Lett. 30 (2013) 040305]. Chinese Physics Letters, 2013, 30, 079902.	3.3	7
50	Quantum steganography with a large payload based on dense coding and entanglement swapping of Greenberger—Horne—Zeilinger states. Chinese Physics B, 2013, 22, 050309.	1.4	12
51	Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State. Chinese Physics Letters, 2013, 30, 040305.	3.3	83
52	Large payload quantum steganography based on cavity quantum electrodynamics. Chinese Physics B, 2013, 22, 040305.	1.4	9
53	A watermarking algorithm for certificate forgery prevention. , 2011, , .		1
54	Entanglement bound for multipartite pure states based on local measurements. Physical Review A, 2011, 84, .	2.5	2

#	Article	IF	CITATIONS
55	Performance analysis of multiplicative distortion-compensated quantized projection. , 2010, , .		0
56	A Robust Zero-Watermark Algorithm Based on Singular Value Decomposition for Digital Right Management. , 2009, , .		2
57	Multiplicative Watermark Detection Using Locally Optimum Nonlinearity. , 2008, , .		0