Jessica Vallance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5067812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecology, 2019, 41, 23-33.	1.6	165
2	Analyses of the Temporal Dynamics of Fungal Communities Colonizing the Healthy Wood Tissues of Esca Leaf-Symptomatic and Asymptomatic Vines. PLoS ONE, 2014, 9, e95928.	2.5	97
3	Pythium oligandrum: an example of opportunistic success. Microbiology (United Kingdom), 2012, 158, 2679-2694.	1.8	89
4	Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 2014, 177, 21-28.	4.7	81
5	Learning Ecological Networks from Next-Generation Sequencing Data. Advances in Ecological Research, 2016, , 1-39.	2.7	68
6	Bacteria in a wood fungal disease: characterization of bacterial communities in wood tissues of esca-foliar symptomatic and asymptomatic grapevines. Frontiers in Microbiology, 2015, 6, 1137.	3.5	57
7	Influence of <i>Pythium oligandrum</i> Biocontrol on Fungal and Oomycete Population Dynamics in the Rhizosphere. Applied and Environmental Microbiology, 2009, 75, 4790-4800.	3.1	55
8	Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale. Soil Biology and Biochemistry, 2017, 114, 121-130.	8.8	55
9	Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biological Control, 2009, 50, 288-298.	3.0	43
10	Phyllosphere Fungal Communities Differentiate More Thoroughly than Bacterial Communities Along an Elevation Gradient. Microbial Ecology, 2016, 72, 1-3.	2.8	39
11	Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR. FEMS Microbiology Ecology, 2007, 61, 317-326.	2.7	36
12	Endophytic bacteria with antagonistic traits inhabit the wood tissues of grapevines from Tunisian vineyards. Biological Control, 2016, 99, 28-37.	3.0	34
13	Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environmental Microbiology, 2020, 22, 5189-5206.	3.8	32
14	Effect of hyperaccumulating plant cover composition and rhizosphere-associated bacteria on the efficiency of nickel extraction from soil. Applied Soil Ecology, 2014, 81, 30-36.	4.3	26
15	Phytoextraction of nickel and rhizosphere microbial communities under mono- or multispecies hyperaccumulator plant cover in a serpentine soil. Australian Journal of Botany, 2015, 63, 92.	0.6	21
16	Ecophysiological impacts of Esca, a devastating grapevine trunk disease, on Vitis vinifera L PLoS ONE, 2019, 14, e0222586.	2.5	19
17	Bacteria associated with wood tissues of Escaâ€diseased grapevines: functional diversity and synergy with <i>Fomitiporia mediterranea</i> to degrade wood components. Environmental Microbiology, 2021, 23, 6104-6121.	3.8	19
18	Characterization of <i>Pythium oligandrum</i> populations that colonize the rhizosphere of vines from the Bordeaux region. FEMS Microbiology Ecology, 2014, 90, 153-167.	2.7	18

JESSICA VALLANCE

#	Article	IF	CITATIONS
19	Isolation, identification and in vitro characterization of grapevine rhizobacteria to control ochratoxigenic Aspergillus spp. on grapes. Biological Control, 2019, 129, 201-211.	3.0	18
20	Microbial networks inferred from environmental DNA data for biomonitoring ecosystem change: Strengths and pitfalls. Molecular Ecology Resources, 2021, 21, 762-780.	4.8	17
21	Exploring the Temporal Dynamics of the Fungal Microbiome in Rootstocks, the Lesser-Known Half of the Grapevine Crop. Journal of Fungi (Basel, Switzerland), 2022, 8, 421.	3.5	17
22	Wood necrosis in esca-affected vines: types, relationships and possible links with foliar symptom expression. Oeno One, 2016, 46, 15.	1.4	16
23	Bio-suppression of Sclerotinia Stem Rot of Tomato and Biostimulation of Plant Growth Using Tomato-associated Rhizobacteria. Journal of Plant Pathology & Microbiology, 2016, 07, .	0.3	14
24	Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot. Biological Control, 2021, 155, 104521.	3.0	11
25	Diversity of Bacterial Communities that Colonize the Filter Units Used for Controlling Plant Pathogens in Soilless Cultures. Microbial Ecology, 2012, 63, 170-187.	2.8	10
26	Biocontrol of Rhizoctonia Root Rot in Tomato and Enhancement of Plant Growth using Rhizobacteria Naturally associated to Tomato. Journal of Plant Pathology & Microbiology, 2016, 7, .	0.3	8
27	Characterization of Tomato-associated Rhizobacteria Recovered from Various Tomato-growing Sites in Tunisia. Journal of Plant Pathology & Microbiology, 2016, 07, .	0.3	5
28	Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture. Microbial Ecology, 2018, 76, 169-181.	2.8	3