
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066665/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Transient Liver Damage and Hemolysis Are Associated With an Inhibition of Ebola Virus Glycoprotein-Specific Antibody Response and Lymphopenia. Journal of Infectious Diseases, 2022, 225, 1852-1855.	1.9	1
2	Novel lowâ€avidity glypicanâ€3 specific CARTs resist exhaustion and mediate durable antitumor effects against HCC. Hepatology, 2022, 76, 330-344.	3.6	11
3	TaÃ ⁻ Forest Virus Does Not Cause Lethal Disease in Ferrets. Microorganisms, 2021, 9, 213.	1.6	4
4	Atypical Ebola Virus Disease in a Nonhuman Primate following Monoclonal Antibody Treatment Is Associated with Glycoprotein Mutations within the Fusion Loop. MBio, 2021, 12, .	1.8	10
5	Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nature Biotechnology, 2021, 39, 747-753.	9.4	38
6	Characterization of Ebola Virus Risk to Bedside Providers in an Intensive Care Environment. Microorganisms, 2021, 9, 498.	1.6	1
7	OUP accepted manuscript. Journal of Infectious Diseases, 2021, , .	1.9	1
8	Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs, 2020, 12, 1742457.	2.6	18
9	The Ferret as a Model for Filovirus Pathogenesis and Countermeasure Evaluation. ILAR Journal, 2020, 61, 62-71.	1.8	14
10	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Neglected Tropical Diseases, 2020, 14, e0008817.	1.3	8
11	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
12	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
13	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
14	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
15	Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. Biosafety and Health, 2019, 1, 6-13.	1.2	3
16	Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses, 2019, 11, 918.	1.5	8
17	The Roles of Ebola Virus Soluble Glycoprotein in Replication, Pathogenesis, and Countermeasure Development. Viruses, 2019, 11, 999.	1.5	29
18	Incorporation of Ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses. PLoS ONE, 2019, 14, e0216949.	1.1	12

#	Article	IF	CITATIONS
19	The Cytokine Response Profile of Ebola Virus Disease in a Large Cohort of Rhesus Macaques Treated With Monoclonal Antibodies. Open Forum Infectious Diseases, 2019, 6, ofz046.	0.4	8
20	Generation and Characterization of Anti-Filovirus Nucleoprotein Monoclonal Antibodies. Viruses, 2019, 11, 259.	1.5	5
21	Characterization of Reston virus infection in ferrets. Antiviral Research, 2019, 165, 1-10.	1.9	11
22	Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine. PLoS Pathogens, 2019, 15, e1007564.	2.1	20
23	Noncovalent SUMO-interaction motifs in HIV integrase play important roles in SUMOylation, cofactor binding, and virus replication. Virology Journal, 2019, 16, 42.	1.4	10
24	Intra-host Ebola viral adaption during human infection. Biosafety and Health, 2019, 1, 14-24.	1.2	9
25	Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Research, 2019, 167, 68-77.	1.9	17
26	Protective Efficacy and Long-Term Immunogenicity in Cynomolgus Macaques by Ebola Virus Glycoprotein Synthetic DNA Vaccines. Journal of Infectious Diseases, 2019, 219, 544-555.	1.9	30
27	Equine-Origin Immunoglobulin Fragments Protect Nonhuman Primates from Ebola Virus Disease. Journal of Virology, 2019, 93, .	1.5	14
28	HBV antigen and DNA loss from mouse serum is associated with novel vaccine-induced HBV surface antigen-specific cell-mediated immunity and cytokine production. Antiviral Research, 2019, 161, 20-27.	1.9	4
29	Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host and Microbe, 2019, 25, 39-48.e5.	5.1	83
30	A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.	5.1	82
31	Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nature Communications, 2019, 10, 105.	5.8	45
32	Naturally Occurring Single Mutations in Ebola Virus Observably Impact Infectivity. Journal of Virology, 2019, 93, .	1.5	28
33	Impact of intensive care unit supportive care on the physiology of Ebola virus disease in a universally lethal non-human primate model. Intensive Care Medicine Experimental, 2019, 7, 54.	0.9	11
34	Small Animal Models for Evaluating Filovirus Countermeasures. ACS Infectious Diseases, 2018, 4, 673-685.	1.8	12
35	Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 3582-3594.	2.9	32
36	Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral Research, 2018, 151, 39-49.	1.9	23

#	Article	IF	CITATIONS
37	Intramuscular Adeno-Associated Virus–Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. Journal of Infectious Diseases, 2018, 217, 916-925.	1.9	37
38	Testing Experimental Therapies in a Guinea Pig Model for Hemorrhagic Fever. Methods in Molecular Biology, 2018, 1604, 269-278.	0.4	1
39	Gene Transfer of ZMapp Antibodies Mediated by Recombinant Adeno-Associated Virus Protects Against Ebola Infections. Human Gene Therapy, 2018, 29, 452-466.	1.4	13
40	Funding vaccines for emerging infectious diseases. Human Vaccines and Immunotherapeutics, 2018, 14, 1760-1762.	1.4	11
41	From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opinion on Biological Therapy, 2018, 18, 159-173.	1.4	35
42	InÂVivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Reports, 2018, 25, 1982-1993.e4.	2.9	38
43	Modeling Ebola Virus Transmission Using Ferrets. MSphere, 2018, 3, .	1.3	16
44	Tangeretin, an extract from Citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Research, 2018, 160, 87-93.	1.9	27
45	Equine immunoglobulin F(ab′)2 fragments protect mice from Rift Valley fever virus infection. International Immunopharmacology, 2018, 64, 217-222.	1.7	3
46	Cellular-Beacon-Mediated Counting for the Ultrasensitive Detection of Ebola Virus on an Integrated Micromagnetic Platform. Analytical Chemistry, 2018, 90, 7310-7317.	3.2	22
47	Marburg and Ravn Virus Infections Do Not Cause Observable Disease in Ferrets. Journal of Infectious Diseases, 2018, 218, S471-S474.	1.9	14
48	The Makona Variant of Ebola Virus Is Highly Lethal to Immunocompromised Mice and Immunocompetent Ferrets. Journal of Infectious Diseases, 2018, 218, S466-S470.	1.9	12
49	Postexposure Protective Efficacy of T-705 (Favipiravir) Against Sudan Virus Infection in Guinea Pigs. Journal of Infectious Diseases, 2018, 218, S649-S657.	1.9	9
50	Purification and characterization of monoclonal IgG antibodies recognizing Ebola virus glycoprotein. Clinical and Experimental Vaccine Research, 2018, 7, 119.	1.1	3
51	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	5.1	182
52	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
53	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	3.1	128
54	Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Scientific Reports, 2017, 7, 43776.	1.6	31

XIANGGUO QIU

#	Article	IF	CITATIONS
55	Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Reports, 2017, 19, 413-424.	2.9	66
56	Assessment of the potential for host-targeted iminosugars UV-4 and UV-5 activity against filovirus infections inÂvitro and inÂvivo. Antiviral Research, 2017, 138, 22-31.	1.9	17
57	Deep-sequencing of Marburg virus genome during sequential mouse passaging and cell-culture adaptation reveals extensive changes over time. Scientific Reports, 2017, 7, 3390.	1.6	14
58	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	13.5	145
59	Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell, 2017, 169, 891-904.e15.	13.5	103
60	Delivering Prolonged Intensive Care to a Non-human Primate: A High Fidelity Animal Model of Critical Illness. Scientific Reports, 2017, 7, 1204.	1.6	10
61	Assessing Antiviral Countermeasures Using Mouse Models of Ebolavirus Infection. Methods in Molecular Biology, 2017, 1628, 273-282.	0.4	2
62	How can Ebola virus infection lead to endothelial dysfunction and coagulopathy?. Future Virology, 2017, 12, 89-92.	0.9	1
63	Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Analytical Chemistry, 2017, 89, 2039-2048.	3.2	58
64	Clinical Evaluation of Ebola Virus Disease Therapeutics. Trends in Molecular Medicine, 2017, 23, 820-830.	3.5	17
65	Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virologica Sinica, 2017, 32, 545-547.	1.2	73
66	Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 2017, 89, 13105-13111.	3.2	128
67	Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Research, 2017, 137, 165-172.	1.9	75
68	Characterization of Sudan Ebolavirus infection in ferrets. Oncotarget, 2017, 8, 46262-46272.	0.8	26
69	Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Science Translational Medicine, 2016, 8, 329ra33.	5.8	78
70	Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Science Translational Medicine, 2016, 8, 369ra179.	5.8	194
71	Designing Efficacious Vesicular Stomatitis Virus-Vectored Vaccines Against Ebola Virus. Methods in Molecular Biology, 2016, 1403, 245-257.	0.4	6
72	Spread of ZIKV and YFV to China: Potential implications. Journal of Infection, 2016, 73, 289-291.	1.7	3

#	Article	IF	CITATIONS
73	An Adenovirus Vaccine Expressing Ebola Virus Variant Makona Glycoprotein Is Efficacious in Guinea Pigs and Nonhuman Primates. Journal of Infectious Diseases, 2016, 214, S326-S332.	1.9	28
74	Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection. Scientific Reports, 2016, 6, 24179.	1.6	33
75	Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques. Journal of Infectious Diseases, 2016, 214, S281-S289.	1.9	30
76	More Challenges From Ebola: Infection of the Central Nervous System. Journal of Infectious Diseases, 2016, 214, S294-S296.	1.9	15
77	The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. Journal of Virology, 2016, 90, 11075-11086.	1.5	21
78	Potent neutralizing monoclonal antibodies against Ebola virus infection. Scientific Reports, 2016, 6, 25856.	1.6	46
79	Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease. Journal of Virology, 2016, 90, 9209-9223.	1.5	63
80	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	2.9	80
81	Can Ebola virus become endemic in the human population?. Protein and Cell, 2016, 7, 4-6.	4.8	6
82	Prophylactic Efficacy of Quercetin 3-β- <i>O</i> - <scp>d</scp> -Glucoside against Ebola Virus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 5182-5188.	1.4	77
83	Progression of Ebola Therapeutics During the 2014–2015 Outbreak. Trends in Molecular Medicine, 2016, 22, 164-173.	3.5	67
84	Antibody therapeutics for Ebola virus disease. Current Opinion in Virology, 2016, 17, 45-49.	2.6	45
85	Diagnostic strategies for Ebola virus detection. Lancet Infectious Diseases, The, 2016, 16, 294-295.	4.6	6
86	Development and Characterization of a Guinea Pig-Adapted Sudan Virus. Journal of Virology, 2016, 90, 392-399.	1.5	42
87	The emergence of antibody therapies for Ebola. Human Antibodies, 2015, 23, 49-56.	0.6	37
88	Characterization of a Bivalent Vaccine Capable of Inducing Protection Against Both Ebola and Cross-clade H5N1 Influenza in Mice. Journal of Infectious Diseases, 2015, 212, S435-S442.	1.9	9
89	Modelling the effect of early detection of Ebola. Lancet Infectious Diseases, The, 2015, 15, 148-149.	4.6	46
90	Intranasal immunization with an adenovirus vaccine protects guinea pigs from Ebola virus transmission by infected animals. Antiviral Research, 2015, 116, 17-19.	1.9	17

#	Article	IF	CITATIONS
91	Optimization of Prime-Boost Vaccination Strategies Against Mouse-Adapted Ebolavirus in a Short-Term Protection Study. Journal of Infectious Diseases, 2015, 212, S389-S397.	1.9	18
92	Development of experimental and early investigational drugs for the treatment of Ebola virus infections. Expert Opinion on Investigational Drugs, 2015, 24, 999-1011.	1.9	7
93	Immune Response to Marburg Virus Angola Infection in Nonhuman Primates. Journal of Infectious Diseases, 2015, 212, S234-S241.	1.9	34
94	Nanozyme-strip for rapid local diagnosis of Ebola. Biosensors and Bioelectronics, 2015, 74, 134-141.	5.3	320
95	Adenovirus-Vectored Vaccine Provides Postexposure Protection to Ebola Virus–Infected Nonhuman Primates. Journal of Infectious Diseases, 2015, 212, S379-S383.	1.9	18
96	Ebola Virus Transmission in Guinea Pigs. Journal of Virology, 2015, 89, 1314-1323.	1.5	46
97	VSVΔG/EBOV GP-Induced Innate Protection Enhances Natural Killer Cell Activity to Increase Survival in a Lethal Mouse Adapted Ebola Virus Infection. Viral Immunology, 2015, 28, 51-61.	0.6	28
98	The Multiple Roles of sGP in Ebola Pathogenesis. Viral Immunology, 2015, 28, 3-9.	0.6	77
99	A Single Dose Respiratory Recombinant Adenovirus-Based Vaccine Provides Long-Term Protection for Non-Human Primates from Lethal Ebola Infection. Molecular Pharmaceutics, 2015, 12, 2712-2731.	2.3	46
100	Ebola viral load at diagnosis associates with patient outcome and outbreak evolution. Journal of Clinical Investigation, 2015, 125, 4421-4428.	3.9	102
101	Antibody therapy for Ebola. Human Vaccines and Immunotherapeutics, 2014, 10, 964-967.	1.4	15
102	Retrospective Studies: Excellent Tools to Complement Surveillance. Journal of Infectious Diseases, 2014, 209, 811-812.	1.9	0
103	Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17182-17187.	3.3	173
104	Establishment and Characterization of a Lethal Mouse Model for the Angola Strain of Marburg Virus. Journal of Virology, 2014, 88, 12703-12714.	1.5	46
105	Characterization of host immune responses in Ebola virus infections. Expert Review of Clinical Immunology, 2014, 10, 781-790.	1.3	78
106	Comprehensive Functional Analysis of N-Linked Glycans on Ebola Virus GP1. MBio, 2014, 5, e00862-13.	1.8	93
107	Immunization with vesicular stomatitis virus vaccine expressing the Ebola glycoprotein provides sustained long-term protection in rodents. Vaccine, 2014, 32, 5722-5729.	1.7	66
108	Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 2014, 514, 47-53.	13.7	883

#	Article	IF	CITATIONS
109	Post-exposure therapy of filovirus infections. Trends in Microbiology, 2014, 22, 456-463.	3.5	58
110	Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory. Scientific Reports, 2014, 4, 5824.	1.6	39
111	Molecular Characterization of the Monoclonal Antibodies Composing ZMAb: A Protective Cocktail Against Ebola Virus. Scientific Reports, 2014, 4, 6881.	1.6	90
112	Monoclonal Antibodies Combined with Adenovirus-Vectored Interferon Significantly Extend the Treatment Window in Ebola Virus-Infected Guinea Pigs. Journal of Virology, 2013, 87, 7754-7757.	1.5	24
113	Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Scientific Reports, 2013, 3, 3365.	1.6	93
114	mAbs and Ad-Vectored IFN-α Therapy Rescue Ebola-Infected Nonhuman Primates When Administered After the Detection of Viremia and Symptoms. Science Translational Medicine, 2013, 5, 207ra143.	5.8	106
115	Immune Parameters Correlate with Protection Against Ebola Virus Infection in Rodents and Nonhuman Primates. Science Translational Medicine, 2012, 4, 158ra146.	5.8	135
116	Successful Treatment of Ebola Virus–Infected Cynomolgus Macaques with Monoclonal Antibodies. Science Translational Medicine, 2012, 4, 138ra81.	5.8	274
117	Ebola GP-Specific Monoclonal Antibodies Protect Mice and Guinea Pigs from Lethal Ebola Virus Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1575.	1.3	90
118	Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clinical Immunology, 2011, 141, 218-227.	1.4	116
119	Mucosal Immunization of Cynomolgus Macaques with the VSVΔG/ZEBOVGP Vaccine Stimulates Strong Ebola GP-Specific Immune Responses. PLoS ONE, 2009, 4, e5547.	1.1	130
120	Production and characterization of monoclonal antibodies against different epitopes of Ebola virus antigens. Journal of Virological Methods, 2007, 143, 29-37.	1.0	41