Beatriz Sanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Dimensional Assemblies of Magnetic MnFe ₂ O ₄ Nanoparticles and Direct <i>In Vitro</i> Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia. ACS Applied Nano Materials, 2020, 3, 8719-8731.	5.0	19
2	Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers, 2020, 12, 3767.	3.7	11
3	A Concise Review of Nanomaterials for Drug Delivery and Release. Current Nanoscience, 2020, 16, 399-412.	1.2	5
4	The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientific Reports, 2019, 9, 3992.	3.3	79
5	Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.	4.5	33
6	Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 2017, 114, 62-70.	11.4	102
7	Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies. Carbohydrate Polymers, 2017, 157, 361-370.	10.2	107
8	Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR. Nanomaterials, 2017, 7, 225.	4.1	30
9	In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space. Scientific Reports, 2016, 6, 38733.	3.3	57
10	Longâ€Term Stability and Reproducibility of Magnetic Colloids Are Key Issues for Steady Values of Specific Power Absorption over Time. European Journal of Inorganic Chemistry, 2015, 2015, 4524-4531.	2.0	31
11	Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension. Journal of the Serbian Chemical Society, 2014, 79, 1155-1167.	0.8	6
12	The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1549-1558.	3.3	84
13	The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials, 2014, 35, 6389-6399.	11.4	220
14	Neuronal cells loaded with PEI-coated Fe3O4 nanoparticles for magnetically guided nerve regeneration. Journal of Materials Chemistry B, 2013, 1, 3607.	5.8	38
15	Poly-I-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. International Journal of Nanomedicine, 2012, 7, 3155.	6.7	57