Carlos Garbisu Crespo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066045/publications.pdf

Version: 2024-02-01

158 papers 8,679 citations

53 h-index 88 g-index

161 all docs

161 docs citations

times ranked

161

8187 citing authors

#	Article	IF	CITATIONS
1	Inoculation of arbuscular mycorrhizal fungi increases lettuce yield without altering natural soil communities. Archives of Agronomy and Soil Science, 2022, 68, 413-430.	1.3	6
2	Quantification of the environmental effectiveness of nature-based solutions for increasing the resilience of cities under climate change. Urban Forestry and Urban Greening, 2022, 67, 127433.	2.3	12
3	Editorial: Searching for Solutions to Soil Pollution: Underlying Soil-Contaminant Interactions and Development of Innovative Land Remediation and Reclamation Techniques. Frontiers in Environmental Science, 2022, 9, .	1.5	2
4	Assessment of the Development of Forest-Based Bioeconomy in European Regions. Sustainability, 2022, 14, 4747.	1.6	5
5	Zero-valent iron nanoparticles and organic amendment assisted rhizoremediation of mixed contaminated soil using Brassica napus. Environmental Technology and Innovation, 2022, 28, 102621.	3.0	10
6	Antibiotic Resistance in Agricultural Soil and Crops Associated to the Application of Cow Manure-Derived Amendments From Conventional and Organic Livestock Farms. Frontiers in Veterinary Science, 2021, 8, 633858.	0.9	23
7	Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Environmental Research, 2021, 194, 110666.	3.7	21
8	Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes, 2021, 9, 572.	1.3	5
9	Agricultural Soils Amended With Thermally-Dried Anaerobically-Digested Sewage Sludge Showed Increased Risk of Antibiotic Resistance Dissemination. Frontiers in Microbiology, 2021, 12, 666854.	1.5	12
10	Application of in situ bioremediation strategies in soils amended with sewage sludges. Science of the Total Environment, 2021, 766, 144099.	3.9	22
11	The degradation of fatty acid methyl esters improved the health of soils simultaneously polluted with metals and biodiesel blends. Fuel, 2021, 291, 120158.	3.4	3
12	Economic and environmental assessment of bacterial poly (3-hydroxybutyrate) production from the organic fraction of municipal solid waste. Bioresources and Bioprocessing, 2021, 8 , .	2.0	11
13	Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria. Processes, 2021, 9, 963.	1.3	5
14	Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecological Indicators, 2021, 125, 107484.	2.6	19
15	Contextualization of the Bioeconomy Concept through Its Links with Related Concepts and the Challenges Facing Humanity. Sustainability, 2021, 13, 7746.	1.6	19
16	Mycorrhizal-Assisted Phytoremediation and Intercropping Strategies Improved the Health of Contaminated Soil in a Peri-Urban Area. Frontiers in Plant Science, 2021, 12, 693044.	1.7	15
17	Acidification alters the functionality of metal polluted soils. Applied Soil Ecology, 2021, 163, 103920.	2.1	8
18	Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, 2021, 9, .	1.5	17

#	Article	IF	Citations
19	Reflections and Insights on the Evolution of the Biological Remediation of Contaminated Soils. Frontiers in Environmental Science, 2021, 9, .	1.5	7
20	A Comparison of IPCC Guidelines and Allocation Methods to Estimate the Environmental Impact of Barley Production in the Basque Country through Life Cycle Assessment (LCA). Agriculture (Switzerland), 2021, 11, 1005.	1.4	5
21	Reduction of the resistome risk from cow slurry and manure microbiomes to soil and vegetable microbiomes. Environmental Microbiology, 2021, 23, 7643-7660.	1.8	6
22	Long-term phytomanagement with compost and a sunflower – Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Science of the Total Environment, 2020, 700, 134529.	3.9	26
23	In situ phytomanagement with Brassica napus and bio-stabilised municipal solid wastes is a suitable strategy for redevelopment of vacant urban land. Urban Forestry and Urban Greening, 2020, 47, 126550.	2.3	16
24	Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon, 2020, 6, e04550.	1.4	37
25	Keep and promote biodiversity at polluted sites under phytomanagement. Environmental Science and Pollution Research, 2020, 27, 44820-44834.	2.7	25
26	Technosols made from urban and industrial wastes are a good option for the reclamation of abandoned city plots. Geoderma, 2020, 377, 114563.	2.3	8
27	Conjugative Coupling Proteins and the Role of Their Domains in Conjugation, Secondary Structure and in vivo Subcellular Location. Frontiers in Molecular Biosciences, 2020, 7, 185.	1.6	10
28	Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Frontiers in Molecular Biosciences, 2020, 7, 201.	1.6	21
29	Impact of the application of commercial and farm-made fermented liquid organic amendments on corn yield and soil quality. Applied Soil Ecology, 2020, 153, 103643.	2.1	11
30	Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Environmental Science and Pollution Research, 2020, 27, 31726-31736.	2.7	27
31	Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. Journal of Environmental Management, 2020, 264, 110422.	3.8	15
32	Variables affecting the diversity of soil organisms in green areas of the city of Donostia-San Sebasti ${\rm \hat{A}}_i$ n. Ecosistemas, 2020, 29, .	0.2	0
33	Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Science of the Total Environment, 2019, 647, 1410-1420.	3.9	132
34	Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy, 2019, 9, 542.	1.3	111
35	The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity. Frontiers in Environmental Science, 2019, 7, .	1.5	28
36	Remediation of Organically Contaminated Soil Through the Combination of Assisted Phytoremediation and Bioaugmentation. Applied Sciences (Switzerland), 2019, 9, 4757.	1.3	9

#	Article	IF	CITATIONS
37	The microbiota of technosols resembles that of a nearby forest soil three years after their establishment. Chemosphere, 2019, 220, 600-610.	4.2	9
38	The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Applied Soil Ecology, 2019, 135, 73-84.	2.1	80
39	The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Journal of Hazardous Materials, 2019, 364, 591-599.	6.5	47
40	Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling. Science of the Total Environment, 2018, 633, 1051-1061.	3.9	54
41	Mobile genetic elements and antibiotic resistance in mine soil amended with organic wastes. Science of the Total Environment, 2018, 621, 725-733.	3.9	27
42	Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel. Data in Brief, 2018, 17, 47-56.	0.5	11
43	From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 2018, 20, 384-397.	1.7	199
44	Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Science of the Total Environment, 2018, 618, 347-356.	3.9	80
45	How Valuable Are Organic Amendments as Tools for the Phytomanagement of Degraded Soils? The Knowns, Known Unknowns, and Unknowns. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	58
46	Data on links between structural and functional prokaryotic diversity in long-term sewage sludge amended soil. Data in Brief, 2018, 20, 1787-1796.	0.5	2
47	Data on the selection of biostimulating agents for the bioremediation of soil simultaneously contaminated with lindane and zinc. Data in Brief, 2018, 20, 1371-1377.	0.5	4
48	Indicators for Monitoring Mine Site Rehabilitation. , 2018, , 49-66.		3
49	Links between data on chemical and biological quality parameters in wastewater-impacted river sediment and water samples. Data in Brief, 2018, 19, 616-622.	0.5	4
50	Characterization of Composted Organic Amendments for Agricultural Use. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	41
51	Effects of corn stover management on soil quality. European Journal of Soil Biology, 2018, 88, 57-64.	1.4	29
52	Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil. FEMS Microbiology Ecology, 2017, 93, fiw252.	1.3	23
53	Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Science of the Total Environment, 2017, 584-585, 329-338.	3.9	79
54	Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiology Letters, 2017, 364, .	0.7	58

#	Article	IF	Citations
55	Short-term effects of non-grazing on plants, soil biota and aboveground-belowground links in Atlantic mountain grasslands. Scientific Reports, 2017, 7, 15097.	1.6	16
56	Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Frontiers in Microbiology, 2017, 8, 1966.	1.5	104
57	Biofilm-Forming Clinical Staphylococcus Isolates Harbor Horizontal Transfer and Antibiotic Resistance Genes. Frontiers in Microbiology, 2017, 8, 2018.	1.5	65
58	Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Scientific Reports, 2016, 6, 28257.	1.6	83
59	Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Science of the Total Environment, 2016, 562, 480-492.	3.9	72
60	Reflections on soil contamination research from a biologistls point of view. Applied Soil Ecology, 2016, 105, 207-210.	2.1	22
61	Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure. Metallomics, 2016, 8, 518-531.	1.0	10
62	Microbial properties for the derivation of critical risk limits in cadmium contaminated soil. Applied Soil Ecology, 2016, 99, 19-28.	2.1	13
63	Dynamic Quality Index for agricultural soils based on fuzzy logic. Ecological Indicators, 2016, 60, 678-692.	2.6	28
64	Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater. Journal of Water and Health, 2015, 13, 1006-1019.	1.1	8
65	The Community Structures of Prokaryotes and Fungi in Mountain Pasture Soils are Highly Correlated and Primarily Influenced by pH. Frontiers in Microbiology, 2015, 6, 1321.	1.5	54
66	Application of ecological risk assessment based on a novel TRIAD-tiered approach to contaminated soil surrounding a closed non-sealed landfill. Science of the Total Environment, 2015, 514, 49-59.	3.9	20
67	Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biology and Toxicology, 2015, 31, 39-81.	2.4	13
68	Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiology Ecology, 2015, 91, 1-11.	1.3	119
69	Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere, 2015, 120, 8-15.	4.2	145
70	Adaptive Long-Term Monitoring of Soil Health in Metal Phytostabilization: Ecological Attributes and Ecosystem Services Based on Soil Microbial Parametersxs. International Journal of Phytoremediation, 2014, 16, 971-981.	1.7	39
71	Modification of soil enzyme activities as a consequence of replacing meadows by pine plantations under temperate climate. Pedobiologia, 2014, 57, 61-66.	0.5	7
72	Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. Journal of Geochemical Exploration, 2014, 145, 181-189.	1.5	77

#	Article	IF	Citations
73	Agro-industrial wastes as effective amendments for ecotoxicity reduction and soil health improvement in aided phytostabilization. Environmental Science and Pollution Research, 2014, 21, 10036-10044.	2.7	14
74	Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials, 2014, 268, 68-76.	6.5	101
75	Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, 2014, 75, 1-12.	2.1	74
76	cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals. Cell Biology and Toxicology, 2014, 30, 207-232.	2.4	12
77	Application of sugar beet vinasse followed by solarization reduces the incidence of Meloidogyne incognita in pepper crops while improving soil quality. Phytoparasitica, 2013, 41, 181-191.	0.6	18
78	Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Science of the Total Environment, 2013, 449, 345-354.	3.9	108
79	Reducing costs in biodiversity monitoring: Shortcuts for plant diversity in meadows as a case study. Ecological Indicators, 2013, 24, 96-104.	2.6	7
80	Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils. Science of the Total Environment, 2012, 433, 264-272.	3.9	16
81	Links between pseudometallophytes and rhizosphere microbial communities in a metalliferous soil. Pedobiologia, 2012, 55, 219-225.	0.5	7
82	Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation. Water, Air, and Soil Pollution, 2012, 223, 3249-3262.	1.1	120
83	Fertilization can modify the non-target effects of pesticides on soil microbial communities. Soil Biology and Biochemistry, 2012, 48, 125-134.	4.2	35
84	Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Spanish Journal of Agricultural Research, 2012, 10, 794.	0.3	25
85	Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. International Journal of Phytoremediation, 2011, 13, 256-270.	1.7	80
86	Assessment of soil quality using microbial properties and attributes of ecological relevance. Applied Soil Ecology, 2011, 49, 1-4.	2.1	68
87	Resposta antioxidante, formação de fitoquelatinas e composição de pigmentos fotoprotetores em Brachiaria decumbens Stapf submetida à contaminação com Cd e Zn. Quimica Nova, 2011, 34, 16-20.	0.3	11
88	Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 2011, 43, 2176-2183.	4.2	210
89	Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: An undisturbed soil column study. Science of the Total Environment, 2011, 409, 763-770.	3.9	18
90	Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Science of the Total Environment, 2011, 409, 4087-93.	3.9	67

#	Article	IF	CITATIONS
91	Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Protection, 2011, 30, 1563-1572.	1.0	57
92	Evaluating the Restoration of Degraded Agricultural Soils Under Organic Fertilization. Environmental Science and Engineering, 2011, , 211-218.	0.1	0
93	Beneficial Effects of Organic Fertilization and No-Tillage on Fine-Textured Soil Properties Under Two Different Forage Crop Rotations. Soil Science, 2010, 175, 173-185.	0.9	8
94	Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 2010, 91, 2066-2074.	3.8	64
95	Assessing the performance of nonparametric estimators of species richness in meadows. Biodiversity and Conservation, 2010, 19, 1417-1436.	1.2	14
96	Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L Environmental Pollution, 2010, 158, 1710-1715.	3.7	64
97	Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environmental Pollution, 2010, 158, 1576-1583.	3.7	76
98	Consequences of soil sampling depth during the assessment of the effects of tillage and fertilization on soil quality: a common oversight. Soil and Tillage Research, 2010, 109, 169-173.	2.6	13
99	Phytostabilization of Metal Contaminated Soils. Reviews on Environmental Health, 2010, 25, 135-46.	1.1	56
100	Impact of Metal Pollution and <i>Thlaspi caerulescens</i> Growth on Soil Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 7843-7853.	1.4	80
101	Heavy Metal Phytoremediation: Microbial Indicators of Soil Health for the Assessment of Remediation Efficiency. Soil Biology, 2009, , 299-313.	0.6	9
102	Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biology and Biochemistry, 2009, 41, 1788-1794.	4.2	110
103	Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biology and Biochemistry, 2009, 41, 505-513.	4.2	116
104	Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere, 2009, 74, 259-264.	4.2	64
105	Deltamethrin Degradation and Soil Microbial Activity in a Riparian Wetland Soil. Soil Science, 2009, 174, 220-228.	0.9	15
106	Evaluation of the Efficiency of a Phytostabilization Process with Biological Indicators of Soil Health. Journal of Environmental Quality, 2009, 38, 2041-2049.	1.0	95
107	Tomato quality is more dependent on temperature than on photosynthetically active radiation. Journal of the Science of Food and Agriculture, 2008, 88, 158-166.	1.7	42
108	Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction. Science of the Total Environment, 2008, 401, 21-28.	3.9	137

#	Article	IF	Citations
109	Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry, 2008, 40, 49-60.	4.2	143
110	Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology, 2008, 39, 299-310.	2.1	132
111	Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 2008, 152, 32-40.	3.7	135
112	Dendroremediation of Heavy Metal Polluted Soils. Reviews on Environmental Health, 2008, 23, 223-34.	1.1	22
113	EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany, 2007, 60, 26-32.	2.0	82
114	Bioluminescent Bacterial Biosensors for the Assessment of Metal Toxicity and Bioavailability in Soils. Reviews on Environmental Health, 2006, 21, 139-52.	1.1	29
115	Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 2006, 65, 43-50.	4.2	82
116	EFFECTS OF VARIETY AND GROWTH SEASON ON THE ORGANOLEPTIC AND NUTRITIONAL QUALITY OF HYDROPONICALLY GROWN TOMATO. Journal of Food Quality, 2006, 29, 16-37.	1.4	43
117	Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell and Environment, 2006, 29, 1422-1429.	2.8	62
118	Effects of fertilization and tillage on soil biological parameters. Enzyme and Microbial Technology, 2006, 40, 100-106.	1.6	137
119	Assessment of the Efficiency of a Metal Phytoextraction Process with Biological Indicators of Soil Health. Plant and Soil, 2006, 281, 147-158.	1.8	97
120	Phytoextraction and Phytofiltration of Arsenic. Reviews on Environmental Health, 2006, 21, 43-56.	1.1	9
121	Aquatic macrophytes as biological indicators of environmental conditions of rivers in north-eastern Spain. Annales De Limnologie, 2005, 41, 175-182.	0.6	20
122	Time course of antioxidant responses of Capsicum annuum subjected to a progressive magnesium deficiency. Annals of Applied Biology, 2005, 146, 123-134.	1.3	32
123	Suitability of the antioxidative system as marker of magnesium deficiencyin Capsicum annuum L. plants under controlled conditions. Plant Growth Regulation, 2005, 46, 51-59.	1.8	15
124	Chelate-Enhanced Phytoremediation of Soils Polluted with Heavy Metals. Reviews in Environmental Science and Biotechnology, 2004, 3, 55-70.	3.9	118
125	Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Reviews in Environmental Science and Biotechnology, 2004, 3, 71-90.	3.9	385
126	Grazing Intensity, Aspect, and Slope Effects on Limestone Grassland Structure. Journal of Range Management, 2004, 57, 606.	0.3	17

#	Article	IF	Citations
127	Vegetation diversity and vertical structure as indicators of forest disturbance. Forest Ecology and Management, 2004, 195, 341-354.	1.4	115
128	Plants against the global epidemic of arsenic poisoning. Environment International, 2004, 30, 949-951.	4.8	28
129	Climbing a Ladder: A Step-by-Step Approach to Understanding the Concept of Agroecosystem Health. Reviews on Environmental Health, 2004, 19, 141-59.	1.1	6
130	Biodiversity and agroecosystems. Biodiversity and Conservation, 2003, 12, 2521-2522.	1.2	12
131	Thioredoxin" $^{1}\!\!/\!_2$ h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta, 2003, 218, 186-191.	1.6	25
132	Soil Enzyme Activities as Biological Indicators of Soil Health. Reviews on Environmental Health, 2003, 18, 65-73.	1.1	190
133	Molecular Microbial Biodiversity Assessment: A Biological Indicator of Soil Health. Reviews on Environmental Health, 2003, 18, 131-51.	1.1	15
134	Evaluation of recycled rockwool as a component of peat-based mixtures for geranium (<i>Pelargonium peltatum</i> L.) production. Journal of Horticultural Science and Biotechnology, 2003, 78, 213-218.	0.9	8
135	EDTA reduces the physiological damage of lead on cardoon plants grown hydroponically. European Physical Journal Special Topics, 2003, 107, 613-616.	0.2	7
136	Phytoremediation: A Technology Using Green Plants to Remove Contaminants from Polluted Areas. Reviews on Environmental Health, 2002, 17, 173-88.	1.1	140
137	Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77, 229-236.	4.8	751
138	Phytoremediation of organic contaminants in soils. Bioresource Technology, 2001, 79, 273-276.	4.8	359
139	Straw quality for its combustion in a straw-fired power plant. Biomass and Bioenergy, 2001, 21, 249-258.	2.9	29
140	Effect of maturation feeding period on survival of Tomicus piniperda (Coleoptera: Scolytidae). Canadian Entomologist, 2001, 133, 131-137.	0.4	1
141	Effect of Intraspecific Competition on Progeny Production of Tomicus piniperda (Coleoptera:) Tj ETQq1 1 0.78431	14 rgBT /C	Overlock 10 Tf
142	Morphological and biochemical responses of <i>Bacillus subtilis</i> to selenite stress. BioFactors, 1999, 10, 311-319.	2.6	28
143	Utilization of genetically engineered microorganisms (GEMs) for bioremediation. Journal of Chemical Technology and Biotechnology, 1999, 74, 599-606.	1.6	28
144	Rhodobacter capsulatusDNA Topoisomerase I Purification and Characterization. Archives of Biochemistry and Biophysics, 1999, 362, 123-130.	1.4	3

#	Article	IF	Citations
145	Aerobic chromate reduction by Bacillus subtilis. Biodegradation, 1998, 9, 133-141.	1.5	155
146	Industrial applications of pectic enzymes: a review. Process Biochemistry, 1998, 33, 21-28.	1.8	334
147	Phosphate uptake by phosphorus-starved cells of the cyanobacterium Phormidium laminosum. World Journal of Microbiology and Biotechnology, 1997, 13, 699-705.	1.7	12
148	Effect of heavy metals on chromate reduction by Bacillus subtilis Journal of General and Applied Microbiology, 1997, 43, 369-371.	0.4	9
149	Bacterial reduction of selenite to elemental selenium. Chemical Geology, 1996, 132, 199-204.	1.4	130
150	Bioavailability of selenium accumulated by selenite-reducing bacteria. Biological Trace Element Research, 1996, 52, 209-225.	1.9	64
151	Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon. Enzyme and Microbial Technology, 1996, 18, 141-146.	1.6	39
152	Viscosity decrease of pectin and fruit juices catalyzed by pectin lyase from Penicillium italicum in batch and continuous-flow membrane reactors. Biotechnology Letters, 1995, 9, 95.	0.5	8
153	\hat{l}^2 -Transelimination of citrus pectin catalyzed by penicillium italicum pectin lyase in a membrane reactor. Applied Biochemistry and Biotechnology, 1995, 55, 249-259.	1.4	11
154	Inorganic nitrogen and phosphate removal from water by free-living and polyvinyl-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Enzyme and Microbial Technology, 1994, 16, 395-401.	1.6	12
155	Removal of phosphate by foamâ€immobilized <i>Phormidium laminosum</i> in batch and continuousâ€flow bioreactors. Journal of Chemical Technology and Biotechnology, 1993, 57, 181-189.	1.6	35
156	Nitrate and nitrite uptake by free-living and immobilized N-started cells of Phormidium laminosum. Journal of Applied Phycology, 1992, 4, 139-148.	1.5	56
157	Removal of nitrate from water by foam-immobilizedPhormidium laminosum in batch and continuous-flow bioreactors. Journal of Applied Phycology, 1991, 3, 221-234.	1.5	69
158	Health cards for the evaluation of agricultural sustainability. Spanish Journal of Soil Science, 0, 6, .	0.0	1