
Carlos Garbisu Crespo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5066045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77, 229-236.	4.8	751
2	Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Reviews in Environmental Science and Biotechnology, 2004, 3, 71-90.	3.9	385
3	Phytoremediation of organic contaminants in soils. Bioresource Technology, 2001, 79, 273-276.	4.8	359
4	Industrial applications of pectic enzymes: a review. Process Biochemistry, 1998, 33, 21-28.	1.8	334
5	Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 2011, 43, 2176-2183.	4.2	210
6	From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 2018, 20, 384-397.	1.7	199
7	Soil Enzyme Activities as Biological Indicators of Soil Health. Reviews on Environmental Health, 2003, 18, 65-73.	1.1	190
8	Aerobic chromate reduction by Bacillus subtilis. Biodegradation, 1998, 9, 133-141.	1.5	155
9	Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere, 2015, 120, 8-15.	4.2	145
10	Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry, 2008, 40, 49-60.	4.2	143
11	Phytoremediation: A Technology Using Green Plants to Remove Contaminants from Polluted Areas. Reviews on Environmental Health, 2002, 17, 173-88.	1.1	140
12	Effects of fertilization and tillage on soil biological parameters. Enzyme and Microbial Technology, 2006, 40, 100-106.	1.6	137
13	Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction. Science of the Total Environment, 2008, 401, 21-28.	3.9	137
14	Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 2008, 152, 32-40.	3.7	135
15	Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology, 2008, 39, 299-310.	2.1	132
16	Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Science of the Total Environment, 2019, 647, 1410-1420.	3.9	132
17	Bacterial reduction of selenite to elemental selenium. Chemical Geology, 1996, 132, 199-204.	1.4	130
18	Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation. Water, Air, and Soil Pollution, 2012, 223, 3249-3262.	1.1	120

#	Article	IF	CITATIONS
19	Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiology Ecology, 2015, 91, 1-11.	1.3	119
20	Chelate-Enhanced Phytoremediation of Soils Polluted with Heavy Metals. Reviews in Environmental Science and Biotechnology, 2004, 3, 55-70.	3.9	118
21	Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biology and Biochemistry, 2009, 41, 505-513.	4.2	116
22	Vegetation diversity and vertical structure as indicators of forest disturbance. Forest Ecology and Management, 2004, 195, 341-354.	1.4	115
23	Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy, 2019, 9, 542.	1.3	111
24	Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biology and Biochemistry, 2009, 41, 1788-1794.	4.2	110
25	Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Science of the Total Environment, 2013, 449, 345-354.	3.9	108
26	Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Frontiers in Microbiology, 2017, 8, 1966.	1.5	104
27	Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials, 2014, 268, 68-76.	6.5	101
28	Assessment of the Efficiency of a Metal Phytoextraction Process with Biological Indicators of Soil Health. Plant and Soil, 2006, 281, 147-158.	1.8	97
29	Evaluation of the Efficiency of a Phytostabilization Process with Biological Indicators of Soil Health. Journal of Environmental Quality, 2009, 38, 2041-2049.	1.0	95
30	Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Scientific Reports, 2016, 6, 28257.	1.6	83
31	Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 2006, 65, 43-50.	4.2	82
32	EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany, 2007, 60, 26-32.	2.0	82
33	Impact of Metal Pollution and <i>Thlaspi caerulescens</i> Growth on Soil Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 7843-7853.	1.4	80
34	Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. International Journal of Phytoremediation, 2011, 13, 256-270.	1.7	80
35	Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Science of the Total Environment, 2018, 618, 347-356.	3.9	80
36	The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Applied Soil Ecology, 2019, 135, 73-84.	2.1	80

#	Article	IF	CITATIONS
37	Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Science of the Total Environment, 2017, 584-585, 329-338.	3.9	79
38	Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. Journal of Geochemical Exploration, 2014, 145, 181-189.	1.5	77
39	Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environmental Pollution, 2010, 158, 1576-1583.	3.7	76
40	Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, 2014, 75, 1-12.	2.1	74
41	Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Science of the Total Environment, 2016, 562, 480-492.	3.9	72
42	Removal of nitrate from water by foam-immobilizedPhormidium laminosum in batch and continuous-flow bioreactors. Journal of Applied Phycology, 1991, 3, 221-234.	1.5	69
43	Assessment of soil quality using microbial properties and attributes of ecological relevance. Applied Soil Ecology, 2011, 49, 1-4.	2.1	68
44	Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Science of the Total Environment, 2011, 409, 4087-93.	3.9	67
45	Biofilm-Forming Clinical Staphylococcus Isolates Harbor Horizontal Transfer and Antibiotic Resistance Genes. Frontiers in Microbiology, 2017, 8, 2018.	1.5	65
46	Bioavailability of selenium accumulated by selenite-reducing bacteria. Biological Trace Element Research, 1996, 52, 209-225.	1.9	64
47	Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere, 2009, 74, 259-264.	4.2	64
48	Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 2010, 91, 2066-2074.	3.8	64
49	Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L Environmental Pollution, 2010, 158, 1710-1715.	3.7	64
50	Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell and Environment, 2006, 29, 1422-1429.	2.8	62
51	Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiology Letters, 2017, 364, .	0.7	58
52	How Valuable Are Organic Amendments as Tools for the Phytomanagement of Degraded Soils? The Knowns, Known Unknowns, and Unknowns. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	58
53	Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Protection, 2011, 30, 1563-1572.	1.0	57
54	Nitrate and nitrite uptake by free-living and immobilized N-started cells ofPhormidium laminosum. Journal of Applied Phycology, 1992, 4, 139-148.	1.5	56

#	Article	IF	CITATIONS
55	Phytostabilization of Metal Contaminated Soils. Reviews on Environmental Health, 2010, 25, 135-46.	1.1	56
56	The Community Structures of Prokaryotes and Fungi in Mountain Pasture Soils are Highly Correlated and Primarily Influenced by pH. Frontiers in Microbiology, 2015, 6, 1321.	1.5	54
57	Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling. Science of the Total Environment, 2018, 633, 1051-1061.	3.9	54
58	The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Journal of Hazardous Materials, 2019, 364, 591-599.	6.5	47
59	EFFECTS OF VARIETY AND GROWTH SEASON ON THE ORGANOLEPTIC AND NUTRITIONAL QUALITY OF HYDROPONICALLY GROWN TOMATO. Journal of Food Quality, 2006, 29, 16-37.	1.4	43
60	Tomato quality is more dependent on temperature than on photosynthetically active radiation. Journal of the Science of Food and Agriculture, 2008, 88, 158-166.	1.7	42
61	Characterization of Composted Organic Amendments for Agricultural Use. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	41
62	Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon. Enzyme and Microbial Technology, 1996, 18, 141-146.	1.6	39
63	Adaptive Long-Term Monitoring of Soil Health in Metal Phytostabilization: Ecological Attributes and Ecosystem Services Based on Soil Microbial Parametersxs. International Journal of Phytoremediation, 2014, 16, 971-981.	1.7	39
64	Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon, 2020, 6, e04550.	1.4	37
65	Removal of phosphate by foamâ€immobilized <i>Phormidium laminosum</i> in batch and continuousâ€flow bioreactors. Journal of Chemical Technology and Biotechnology, 1993, 57, 181-189.	1.6	35
66	Fertilization can modify the non-target effects of pesticides on soil microbial communities. Soil Biology and Biochemistry, 2012, 48, 125-134.	4.2	35
67	Time course of antioxidant responses of Capsicum annuum subjected to a progressive magnesium deficiency. Annals of Applied Biology, 2005, 146, 123-134.	1.3	32
68	Straw quality for its combustion in a straw-fired power plant. Biomass and Bioenergy, 2001, 21, 249-258.	2.9	29
69	Bioluminescent Bacterial Biosensors for the Assessment of Metal Toxicity and Bioavailability in Soils. Reviews on Environmental Health, 2006, 21, 139-52.	1.1	29
70	Effects of corn stover management on soil quality. European Journal of Soil Biology, 2018, 88, 57-64.	1.4	29
71	Morphological and biochemical responses of <i>Bacillus subtilis</i> to selenite stress. BioFactors, 1999, 10, 311-319.	2.6	28
72	Utilization of genetically engineered microorganisms (GEMs) for bioremediation. Journal of Chemical Technology and Biotechnology, 1999, 74, 599-606.	1.6	28

#	Article	IF	CITATIONS
73	Plants against the global epidemic of arsenic poisoning. Environment International, 2004, 30, 949-951.	4.8	28
74	Dynamic Quality Index for agricultural soils based on fuzzy logic. Ecological Indicators, 2016, 60, 678-692.	2.6	28
75	The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity. Frontiers in Environmental Science, 2019, 7, .	1.5	28
76	Mobile genetic elements and antibiotic resistance in mine soil amended with organic wastes. Science of the Total Environment, 2018, 621, 725-733.	3.9	27
77	Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Environmental Science and Pollution Research, 2020, 27, 31726-31736.	2.7	27
78	Long-term phytomanagement with compost and a sunflower – Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Science of the Total Environment, 2020, 700, 134529.	3.9	26
79	Thioredoxinh overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta, 2003, 218, 186-191.	1.6	25
80	Keep and promote biodiversity at polluted sites under phytomanagement. Environmental Science and Pollution Research, 2020, 27, 44820-44834.	2.7	25
81	Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Spanish Journal of Agricultural Research, 2012, 10, 794.	0.3	25
82	Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil. FEMS Microbiology Ecology, 2017, 93, fiw252.	1.3	23
83	Antibiotic Resistance in Agricultural Soil and Crops Associated to the Application of Cow Manure-Derived Amendments From Conventional and Organic Livestock Farms. Frontiers in Veterinary Science, 2021, 8, 633858.	0.9	23
84	Dendroremediation of Heavy Metal Polluted Soils. Reviews on Environmental Health, 2008, 23, 223-34.	1.1	22
85	Reflections on soil contamination research from a biologistÌs point of view. Applied Soil Ecology, 2016, 105, 207-210.	2.1	22
86	Application of in situ bioremediation strategies in soils amended with sewage sludges. Science of the Total Environment, 2021, 766, 144099.	3.9	22
87	Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Frontiers in Molecular Biosciences, 2020, 7, 201.	1.6	21
88	Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Environmental Research, 2021, 194, 110666.	3.7	21
89	Aquatic macrophytes as biological indicators of environmental conditions of rivers in north-eastern Spain. Annales De Limnologie, 2005, 41, 175-182.	0.6	20
90	Application of ecological risk assessment based on a novel TRIAD-tiered approach to contaminated soil surrounding a closed non-sealed landfill. Science of the Total Environment, 2015, 514, 49-59.	3.9	20

#	Article	IF	CITATIONS
91	Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecological Indicators, 2021, 125, 107484.	2.6	19
92	Contextualization of the Bioeconomy Concept through Its Links with Related Concepts and the Challenges Facing Humanity. Sustainability, 2021, 13, 7746.	1.6	19
93	Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: An undisturbed soil column study. Science of the Total Environment, 2011, 409, 763-770.	3.9	18
94	Application of sugar beet vinasse followed by solarization reduces the incidence of Meloidogyne incognita in pepper crops while improving soil quality. Phytoparasitica, 2013, 41, 181-191.	0.6	18
95	Grazing Intensity, Aspect, and Slope Effects on Limestone Grassland Structure. Journal of Range Management, 2004, 57, 606.	0.3	17
96	Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, 2021, 9, .	1.5	17
97	Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils. Science of the Total Environment, 2012, 433, 264-272.	3.9	16
98	Short-term effects of non-grazing on plants, soil biota and aboveground-belowground links in Atlantic mountain grasslands. Scientific Reports, 2017, 7, 15097.	1.6	16
99	In situ phytomanagement with Brassica napus and bio-stabilised municipal solid wastes is a suitable strategy for redevelopment of vacant urban land. Urban Forestry and Urban Greening, 2020, 47, 126550.	2.3	16
100	Molecular Microbial Biodiversity Assessment: A Biological Indicator of Soil Health. Reviews on Environmental Health, 2003, 18, 131-51.	1.1	15
101	Suitability of the antioxidative system as marker of magnesium deficiencyin Capsicum annuum L. plants under controlled conditions. Plant Growth Regulation, 2005, 46, 51-59.	1.8	15
102	Deltamethrin Degradation and Soil Microbial Activity in a Riparian Wetland Soil. Soil Science, 2009, 174, 220-228.	0.9	15
103	Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. Journal of Environmental Management, 2020, 264, 110422.	3.8	15
104	Mycorrhizal-Assisted Phytoremediation and Intercropping Strategies Improved the Health of Contaminated Soil in a Peri-Urban Area. Frontiers in Plant Science, 2021, 12, 693044.	1.7	15
105	Assessing the performance of nonparametric estimators of species richness in meadows. Biodiversity and Conservation, 2010, 19, 1417-1436.	1.2	14
106	Agro-industrial wastes as effective amendments for ecotoxicity reduction and soil health improvement in aided phytostabilization. Environmental Science and Pollution Research, 2014, 21, 10036-10044.	2.7	14
107	Effect of Intraspecific Competition on Progeny Production of Tomicus piniperda (Coleoptera:) Tj ETQq1 1 0.7843	814 rgBT /C 0.7	$\frac{13}{13}$
	Consequences of soil sampling denth during the assessment of the effects of tillage and fertilization		

Consequences of soil sampling depth during the assessment of the effects of tillage and fertilization on soil quality: a common oversight. Soil and Tillage Research, 2010, 109, 169-173.

2.6 13

#	Article	IF	CITATIONS
109	Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biology and Toxicology, 2015, 31, 39-81.	2.4	13
110	Microbial properties for the derivation of critical risk limits in cadmium contaminated soil. Applied Soil Ecology, 2016, 99, 19-28.	2.1	13
111	Inorganic nitrogen and phosphate removal from water by free-living and polyvinyl-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Enzyme and Microbial Technology, 1994, 16, 395-401.	1.6	12
112	Phosphate uptake by phosphorus-starved cells of the cyanobacterium Phormidium laminosum. World Journal of Microbiology and Biotechnology, 1997, 13, 699-705.	1.7	12
113	Biodiversity and agroecosystems. Biodiversity and Conservation, 2003, 12, 2521-2522.	1.2	12
114	cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals. Cell Biology and Toxicology, 2014, 30, 207-232.	2.4	12
115	Agricultural Soils Amended With Thermally-Dried Anaerobically-Digested Sewage Sludge Showed Increased Risk of Antibiotic Resistance Dissemination. Frontiers in Microbiology, 2021, 12, 666854.	1.5	12
116	Quantification of the environmental effectiveness of nature-based solutions for increasing the resilience of cities under climate change. Urban Forestry and Urban Greening, 2022, 67, 127433.	2.3	12
117	β-Transelimination of citrus pectin catalyzed by penicillium italicum pectin lyase in a membrane reactor. Applied Biochemistry and Biotechnology, 1995, 55, 249-259.	1.4	11
118	Resposta antioxidante, formação de fitoquelatinas e composição de pigmentos fotoprotetores em Brachiaria decumbens Stapf submetida à contaminação com Cd e Zn. Quimica Nova, 2011, 34, 16-20.	0.3	11
119	Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel. Data in Brief, 2018, 17, 47-56.	0.5	11
120	Impact of the application of commercial and farm-made fermented liquid organic amendments on corn yield and soil quality. Applied Soil Ecology, 2020, 153, 103643.	2.1	11
121	Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste. Bioresources and Bioprocessing, 2021, 8, .	2.0	11
122	Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure. Metallomics, 2016, 8, 518-531.	1.0	10
123	Conjugative Coupling Proteins and the Role of Their Domains in Conjugation, Secondary Structure and in vivo Subcellular Location. Frontiers in Molecular Biosciences, 2020, 7, 185.	1.6	10
124	Zero-valent iron nanoparticles and organic amendment assisted rhizoremediation of mixed contaminated soil using Brassica napus. Environmental Technology and Innovation, 2022, 28, 102621.	3.0	10
125	Phytoextraction and Phytofiltration of Arsenic. Reviews on Environmental Health, 2006, 21, 43-56.	1.1	9
126	Heavy Metal Phytoremediation: Microbial Indicators of Soil Health for the Assessment of Remediation Efficiency. Soil Biology, 2009, , 299-313.	0.6	9

#	Article	IF	CITATIONS
127	Remediation of Organically Contaminated Soil Through the Combination of Assisted Phytoremediation and Bioaugmentation. Applied Sciences (Switzerland), 2019, 9, 4757.	1.3	9
128	The microbiota of technosols resembles that of a nearby forest soil three years after their establishment. Chemosphere, 2019, 220, 600-610.	4.2	9
129	Effect of heavy metals on chromate reduction by Bacillus subtilis Journal of General and Applied Microbiology, 1997, 43, 369-371.	0.4	9
130	Viscosity decrease of pectin and fruit juices catalyzed by pectin lyase from Penicillium italicum in batch and continuous-flow membrane reactors. Biotechnology Letters, 1995, 9, 95.	0.5	8
131	Evaluation of recycled rockwool as a component of peat-based mixtures for geranium (<i>Pelargonium peltatum</i> L.) production. Journal of Horticultural Science and Biotechnology, 2003, 78, 213-218.	0.9	8
132	Beneficial Effects of Organic Fertilization and No-Tillage on Fine-Textured Soil Properties Under Two Different Forage Crop Rotations. Soil Science, 2010, 175, 173-185.	0.9	8
133	Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater. Journal of Water and Health, 2015, 13, 1006-1019.	1.1	8
134	Technosols made from urban and industrial wastes are a good option for the reclamation of abandoned city plots. Geoderma, 2020, 377, 114563.	2.3	8
135	Acidification alters the functionality of metal polluted soils. Applied Soil Ecology, 2021, 163, 103920.	2.1	8
136	EDTA reduces the physiological damage of lead on cardoon plants grown hydroponically. European Physical Journal Special Topics, 2003, 107, 613-616.	0.2	7
137	Links between pseudometallophytes and rhizosphere microbial communities in a metalliferous soil. Pedobiologia, 2012, 55, 219-225.	0.5	7
138	Reducing costs in biodiversity monitoring: Shortcuts for plant diversity in meadows as a case study. Ecological Indicators, 2013, 24, 96-104.	2.6	7
139	Modification of soil enzyme activities as a consequence of replacing meadows by pine plantations under temperate climate. Pedobiologia, 2014, 57, 61-66.	0.5	7
140	Reflections and Insights on the Evolution of the Biological Remediation of Contaminated Soils. Frontiers in Environmental Science, 2021, 9, .	1.5	7
141	Climbing a Ladder: A Step-by-Step Approach to Understanding the Concept of Agroecosystem Health. Reviews on Environmental Health, 2004, 19, 141-59.	1.1	6
142	Inoculation of arbuscular mycorrhizal fungi increases lettuce yield without altering natural soil communities. Archives of Agronomy and Soil Science, 2022, 68, 413-430.	1.3	6
143	Reduction of the resistome risk from cow slurry and manure microbiomes to soil and vegetable microbiomes. Environmental Microbiology, 2021, 23, 7643-7660.	1.8	6
144	Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes, 2021, 9, 572.	1.3	5

#	Article	IF	CITATIONS
145	Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria. Processes, 2021, 9, 963.	1.3	5
146	A Comparison of IPCC Guidelines and Allocation Methods to Estimate the Environmental Impact of Barley Production in the Basque Country through Life Cycle Assessment (LCA). Agriculture (Switzerland), 2021, 11, 1005.	1.4	5
147	Assessment of the Development of Forest-Based Bioeconomy in European Regions. Sustainability, 2022, 14, 4747.	1.6	5
148	Data on the selection of biostimulating agents for the bioremediation of soil simultaneously contaminated with lindane and zinc. Data in Brief, 2018, 20, 1371-1377.	0.5	4
149	Links between data on chemical and biological quality parameters in wastewater-impacted river sediment and water samples. Data in Brief, 2018, 19, 616-622.	0.5	4
150	Rhodobacter capsulatusDNA Topoisomerase I Purification and Characterization. Archives of Biochemistry and Biophysics, 1999, 362, 123-130.	1.4	3
151	Indicators for Monitoring Mine Site Rehabilitation. , 2018, , 49-66.		3
152	The degradation of fatty acid methyl esters improved the health of soils simultaneously polluted with metals and biodiesel blends. Fuel, 2021, 291, 120158.	3.4	3
153	Data on links between structural and functional prokaryotic diversity in long-term sewage sludge amended soil. Data in Brief, 2018, 20, 1787-1796.	0.5	2
154	Editorial: Searching for Solutions to Soil Pollution: Underlying Soil-Contaminant Interactions and Development of Innovative Land Remediation and Reclamation Techniques. Frontiers in Environmental Science, 2022, 9, .	1.5	2
155	Effect of maturation feeding period on survival of Tomicus piniperda (Coleoptera: Scolytidae). Canadian Entomologist, 2001, 133, 131-137.	0.4	1
156	Health cards for the evaluation of agricultural sustainability. Spanish Journal of Soil Science, 0, 6, .	0.0	1
157	Evaluating the Restoration of Degraded Agricultural Soils Under Organic Fertilization. Environmental Science and Engineering, 2011, , 211-218.	0.1	0
158	Variables affecting the diversity of soil organisms in green areas of the city of Donostia-San Sebastián. Ecosistemas, 2020, 29, .	0.2	0