
Andrew R Tee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5065976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 2002, 10, 151-162.	4.5	1,376
3	Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology, 2003, 13, 1259-1268.	1.8	1,047
4	mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. Molecular and Cellular Biology, 2004, 24, 200-216.	1.1	763
5	Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13571-13576.	3.3	744
6	Hypoxia-inducible Factor 1α Is Regulated by the Mammalian Target of Rapamycin (mTOR) via an mTOR Signaling Motif. Journal of Biological Chemistry, 2007, 282, 20534-20543.	1.6	429
7	The Tuberous Sclerosis Protein TSC2 Is Not Required for the Regulation of the Mammalian Target of Rapamycin by Amino Acids and Certain Cellular Stresses. Journal of Biological Chemistry, 2005, 280, 18717-18727.	1.6	312
8	Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. Journal of Cell Biology, 2006, 173, 279-289.	2.3	303
9	mTOR, translational control and human disease. Seminars in Cell and Developmental Biology, 2005, 16, 29-37.	2.3	294
10	Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochemical Journal, 2003, 372, 555-566.	1.7	279
11	mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene, 2015, 34, 2239-2250.	2.6	235
12	Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cellular Signalling, 2009, 21, 827-835.	1.7	220
13	A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature Cell Biology, 2013, 15, 1186-1196.	4.6	218
14	Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2–mediated suppression of mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2950-7.	3.3	212
15	Leucine and mTORC1: a complex relationship. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1329-E1342.	1.8	195
16	mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action. Journal of Biological Chemistry, 2010, 285, 7866-7879.	1.6	189
17	Inactivation of the Tuberous Sclerosis Complex-1 and -2 Gene Products Occurs by Phosphoinositide 3-Kinase/Akt-dependent and -independent Phosphorylation of Tuberin. Journal of Biological Chemistry, 2003, 278, 37288-37296.	1.6	182
18	ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy, 2011, 7, 737-747.	4.3	177

ANDREW R TEE

#	Article	IF	CITATIONS
19	The Extracellular Signal-regulated Kinase Pathway Regulates the Phosphorylation of 4E-BP1 at Multiple Sites. Journal of Biological Chemistry, 2002, 277, 11591-11596.	1.6	166
20	Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metabolism, 2018, 28, 866-880.e15.	7.2	154
21	Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. ELife, 2016, 5, .	2.8	147
22	Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 2012, 287, 17530-17545.	1.6	141
23	Caspase Cleavage of Initiation Factor 4E-Binding Protein 1 Yields a Dominant Inhibitor of Cap-Dependent Translation and Reveals a Novel Regulatory Motif. Molecular and Cellular Biology, 2002, 22, 1674-1683.	1.1	129
24	The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. Journal of Clinical Investigation, 2014, 124, 2640-2650.	3.9	124
25	DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene, 2000, 19, 3021-3031.	2.6	114
26	The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochemical Society Transactions, 2013, 41, 939-943.	1.6	109
27	Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Letters, 2005, 579, 4763-4768.	1.3	87
28	Neurofibromatosis type 1: Fundamental insights into cell signalling and cancer. Seminars in Cell and Developmental Biology, 2016, 52, 39-46.	2.3	74
29	The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex. Seminars in Cell and Developmental Biology, 2016, 52, 12-20.	2.3	74
30	Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein–protein interactions for substrate recognition. Cellular Signalling, 2009, 21, 1073-1084.	1.7	72
31	Absence of the Birt–Hogg–Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene, 2011, 30, 1159-1173.	2.6	69
32	Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in <i>Xenopus</i> oocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E822-E829.	1.8	66
33	Birt–Hogg–Dubé syndrome is a novel ciliopathy. Human Molecular Genetics, 2013, 22, 4383-4397.	1.4	66
34	FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy, 2014, 10, 1749-1760.	4.3	64
35	cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cellular Signalling, 2011, 23, 1927-1935.	1.7	56
36	Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression. Cancers, 2018, 10, 5.	1.7	53

ANDREW R TEE

#	Article	IF	CITATIONS
37	The Target of Rapamycin and Mechanisms of Cell Growth. International Journal of Molecular Sciences, 2018, 19, 880.	1.8	53
38	Characterization of a Conserved C-terminal Motif (RSPRR) in Ribosomal Protein S6 Kinase 1 Required for Its Mammalian Target of Rapamycin-dependent Regulation. Journal of Biological Chemistry, 2005, 280, 11101-11106.	1.6	50
39	Bidirectional Regulation of Nuclear Factor-ήB and Mammalian Target of Rapamycin Signaling Functionally Links Bnip3 Gene Repression and Cell Survival of Ventricular Myocytes. Circulation: Heart Failure, 2013, 6, 335-343.	1.6	50
40	Staurosporine inhibits phosphorylation of translational regulators linked to mTOR. Cell Death and Differentiation, 2001, 8, 841-849.	5.0	47
41	Possible Targets for Nonimmunosuppressive Therapy of Graves' Orbitopathy. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1183-E1190.	1.8	40
42	Exploiting cancer vulnerabilities: mTOR, autophagy, and homeostatic imbalance. Essays in Biochemistry, 2017, 61, 699-710.	2.1	31
43	Endoplasmic reticulum stress and cell death in mTORC1â€overactive cells is induced by nelfinavir andÂenhanced by chloroquine. Molecular Oncology, 2015, 9, 675-688.	2.1	30
44	STAT3 and HIF1α Signaling Drives Oncogenic Cellular Phenotypes in Malignant Peripheral Nerve Sheath Tumors. Molecular Cancer Research, 2015, 13, 1149-1160.	1.5	25
45	Characterizing the interaction of the mammalian elF4E-related protein 4EHP with 4E-BP1. FEBS Letters, 2004, 564, 58-62.	1.3	23
46	Finding a cure for tuberous sclerosis complex: From genetics through to targeted drug therapies. Advances in Genetics, 2019, 103, 91-118.	0.8	23
47	Birt–Hogg–Dubé: tumour suppressor function and signalling dynamics central to folliculin. Familial Cancer, 2013, 12, 367-372.	0.9	20
48	Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Letters, 2002, 532, 319-323.	1.3	19
49	Evaluation of copy number variation and gene expression in neurofibromatosis type-1-associated malignant peripheral nerve sheath tumours. Human Genomics, 2015, 9, 3.	1.4	17
50	Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cellular and Molecular Life Sciences, 2021, 78, 249-270.	2.4	14
51	STAT3 and mTOR: co-operating to drive HIF and angiogenesis. Oncoscience, 2015, 2, 913-914.	0.9	14
52	Targeting protein homeostasis with nelfinavir/salinomycin dual therapy effectively induces death of mTORC1 hyperactive cells. Oncotarget, 2017, 8, 48711-48724.	0.8	13
53	Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours. British Journal of Cancer, 2021, 124, 1566-1580.	2.9	12
54	Loss of tuberous sclerosis complex 2 sensitizes tumors to nelfinavirâ^'bortezomib therapy to intensify endoplasmic reticulum stress-induced cell death. Oncogene, 2018, 37, 5913-5925.	2.6	10

Andrew R Tee

0

#	Article	IF	CITATIONS
55	Determining the pathogenicity of patient-derived TSC2 mutations by functional characterization and clinical evidence. European Journal of Human Genetics, 2011, 19, 789-795.	1.4	9
56	Distinctive Features of Orbital Adipose Tissue (OAT) in Graves' Orbitopathy. International Journal of Molecular Sciences, 2020, 21, 9145.	1.8	9
57	The zinc finger/RING domain protein Unkempt regulates cognitive flexibility. Scientific Reports, 2021, 11, 16299.	1.6	8
58	Fundamental for life: mTOR orchestrates developing biological systems. Seminars in Cell and Developmental Biology, 2014, 36, 66-67.	2.3	6
59	Energy Stress-Mediated Cytotoxicity in Tuberous Sclerosis Complex 2-Deficient Cells with Nelfinavir and Mefloquine Treatment. Cancers, 2018, 10, 375.	1.7	5
60	Mechanistic Target of Rapamycin (mTOR) in the Cancer Setting. Cancers, 2018, 10, 168.	1.7	4
61	The Role of Mitochondria-Linked Fatty-Acid Uptake-Driven Adipogenesis in Graves Orbitopathy. Endocrinology, 2021, 162, .	1.4	2
62	Metastatic Castration-Resistant Prostate Cancer Hungers for Leucine. Journal of the National Cancer Institute, 2013, 105, 1427-1428.	3.0	1
63	The benefits of exploiting rare genetic disorders to better understand human health and disease. Seminars in Cell and Developmental Biology, 2016, 52, 1-2.	2.3	1

Tuberous Sclerosis Complex. , 2011, , 3787-3791.