
Lynda A Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5065714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutralizing Antibody Kinetics and Immune Protection Against Herpes Simplex Virus 1 Genital Disease in Vaccinated Women. Journal of Infectious Diseases, 2023, 227, 522-527.	4.0	7
2	Synthesis of Polyoxygenated Tropolones and their Antiviral Activity against Hepatitis B Virus and Herpes Simplex Virusâ€1. Chemistry - A European Journal, 2022, 28, .	3.3	4
3	Efficacy of an HSV-1 Neuro-Attenuated Vaccine in Mice Is Reduced by Preventing Viral DNA Replication. Viruses, 2022, 14, 869.	3.3	1
4	Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2. European Journal of Medicinal Chemistry, 2022, 238, 114443.	5.5	6
5	Antiviral activity of Î'-hydroxytropolones on caprine alphaherpesvirus 1 in vitro. Research in Veterinary Science, 2020, 129, 99-102.	1.9	1
6	Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MedChemComm, 2019, 10, 1173-1176.	3.4	7
7	Molecular analyses and phylogeny of the herpes simplex virus 2 US9 and glycoproteins gE/gl obtained from infected subjects during the Herpevac Trial for Women. PLoS ONE, 2019, 14, e0212877.	2.5	2
8	Correlation between herpes simplex virus neutralizing antibody titers determined by ELVIS cell and traditional plaque reduction assays. PLoS ONE, 2019, 14, e0214467.	2.5	4
9	Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Advances, 2019, 9, 34227-34234.	3.6	9
10	Broad anti-herpesviral activity of α-hydroxytropolones. Veterinary Microbiology, 2018, 214, 125-131.	1.9	14
11	Herpes Simplex Virus 1 Mutant with Point Mutations in <i>UL39</i> Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. Journal of Virology, 2018, 92, .	3.4	27
12	Attenuated Herpes Simplex Virus 1 (HSV-1) Expressing a Mutant Form of ICP6 Stimulates a Strong Immune Response That Protects Mice against HSV-1-Induced Corneal Disease. Journal of Virology, 2018, 92, .	3.4	11
13	Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice. Antiviral Research, 2018, 156, 102-106.	4.1	11
14	Inhibition of hepatitis B virus replication by N -hydroxyisoquinolinediones and related polyoxygenated heterocycles. Antiviral Research, 2017, 143, 205-217.	4.1	48
15	Molecular Evolution of Herpes Simplex Virus 2 Complete Genomes: Comparison between Primary and Recurrent Infections. Journal of Virology, 2017, 91, .	3.4	22
16	The herpevac trial for women: Sequence analysis of glycoproteins from viruses obtained from infected subjects. PLoS ONE, 2017, 12, e0176687.	2.5	5
17	Development of a high-throughput β-Gal-based neutralization assay for quantitation of herpes simplex virus-neutralizing antibodies in human samples. Vaccine, 2016, 34, 3901-3906.	3.8	7
18	Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrobial Agents and Chemotherapy, 2016, 60, 2140-2149.	3.2	36

Lynda A Morrison

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Higher Throughput Quantification of Neutralizing Antibody to Herpes Simplex Viruses. PLoS ONE, 2015, 10, e0144738.	2.5	7
21	Up to Four Distinct Polypeptides Are Produced from the γ34.5 Open Reading Frame of Herpes Simplex Virus 2. Journal of Virology, 2014, 88, 11284-11296.	3.4	9
22	Inhibitors of Nucleotidyltransferase Superfamily Enzymes Suppress Herpes Simplex Virus Replication. Antimicrobial Agents and Chemotherapy, 2014, 58, 7451-7461.	3.2	42
23	Herpes simplex virus 2 ICP34.5 confers neurovirulence by regulating the type I interferon response. Virology, 2014, 468-470, 330-339.	2.4	16
24	HSV-1 strain McKrae is more neuroinvasive than HSV-1 KOS after corneal or vaginal inoculation in mice. Virus Research, 2013, 173, 436-440.	2.2	36
25	A Proautophagic Antiviral Role for the Cellular Prion Protein Identified by Infection with a Herpes Simplex Virus 1 ICP34.5 Mutant. Journal of Virology, 2013, 87, 5882-5894.	3.4	19
26	Genome Sequence of Herpes Simplex Virus 1 Strain McKrae. Journal of Virology, 2012, 86, 9540-9541.	3.4	37
27	Genome Sequence of Herpes Simplex Virus 1 Strain KOS. Journal of Virology, 2012, 86, 6371-6372.	3.4	74
28	B7 Costimulation Molecules Encoded by Replication-Defective, vhs-Deficient HSV-1 Improve Vaccine-Induced Protection against Corneal Disease. PLoS ONE, 2011, 6, e22772.	2.5	16
29	Breach of the nuclear lamina during assembly of herpes simplex viruses. Nucleus, 2011, 2, 271-276.	2.2	16
30	Virus-Encoded B7-2 Costimulation Molecules Enhance the Protective Capacity of a Replication-Defective Herpes Simplex Virus Type 2 Vaccine in Immunocompetent Mice. Journal of Virology, 2009, 83, 953-960.	3.4	17
31	Increased elF2α Phosphorylation Attenuates Replication of Herpes Simplex Virus 2 vhs Mutants in Mouse Embryonic Fibroblasts and Correlates with Reduced Accumulation of the PKR Antagonist ICP34.5. Journal of Virology, 2009, 83, 9151-9162.	3.4	21
32	Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins. Virology, 2009, 392, 137-147.	2.4	56
33	Substrate specificity of the herpes simplex virus type 2 UL13 protein kinase. Virology, 2008, 374, 1-10.	2.4	17
34	Replication-defective virus vaccine-induced protection of mice from genital herpes simplex virus 2 requires CD4 T cells. Virology, 2008, 376, 205-210.	2.4	17
35	B7 Costimulation Molecules Expressed from the Herpes Simplex Virus 2 Genome Rescue Immune Induction in B7-Deficient Mice. Journal of Virology, 2008, 82, 4685-4685.	3.4	0
36	Selective Ablation of Virion Host Shutoff Protein RNase Activity Attenuates Herpes Simplex Virus 2 in Mice. Journal of Virology, 2008, 82, 3642-3653.	3.4	32

Lynda A Morrison

#	Article	IF	CITATIONS
37	B7 Costimulation Molecules Expressed from the Herpes Simplex Virus 2 Genome Rescue Immune Induction in B7-Deficient Mice. Journal of Virology, 2007, 81, 12200-12209.	3.4	10
38	Herpes simplex virus type 2-mediated disease is reduced in mice lacking RNase L. Virology, 2007, 360, 322-328.	2.4	9
39	CD8+ T cells control corneal disease following ocular infection with herpes simplex virus type 1. Journal of General Virology, 2004, 85, 2055-2063.	2.9	43
40	Herpes simplex virus 2 virion host shutoff protein interferes with type I interferon production and responsiveness. Virology, 2004, 322, 158-167.	2.4	68
41	Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization. Virology, 2004, 330, 74-81.	2.4	17
42	The Toll of herpes simplex virus infection. Trends in Microbiology, 2004, 12, 353-356.	7.7	46
43	Mechanism of Reduced T-Cell Effector Functions and Class-Switched Antibody Responses to Herpes Simplex Virus Type 2 in the Absence of B7 Costimulation. Journal of Virology, 2003, 77, 2426-2435.	3.4	24
44	Herpes Simplex Virus Type 2 Virion Host Shutoff Protein Regulates Alpha/Beta Interferon but Not Adaptive Immune Responses during Primary Infection In Vivo. Journal of Virology, 2003, 77, 9337-9345.	3.4	110
45	B7 Costimulation Plays an Important Role in Protection from Herpes Simplex Virus Type 2-Mediated Pathology. Journal of Virology, 2002, 76, 2563-2566.	3.4	20
46	Vaccines Against Genital Herpes. Drugs, 2002, 62, 1119-1129.	10.9	20
47	Comparison of Different Forms of Herpes Simplex Replication-Defective Mutant Viruses as Vaccines in a Mouse Model of HSV-2 Genital Infection. Virology, 2001, 288, 256-263.	2.4	46
48	Temporal Regulation of Herpes Simplex Virus Type 2 VP22 Expression and Phosphorylation. Journal of Virology, 2001, 75, 10721-10729.	3.4	40
49	Vaccine-Induced Serum Immunoglobin Contributes to Protection from Herpes Simplex Virus Type 2 Genital Infection in the Presence of Immune T Cells. Journal of Virology, 2001, 75, 1195-1204.	3.4	61
50	Disruption of Virion Host Shutoff Activity Improves the Immunogenicity and Protective Capacity of a Replication-Incompetent Herpes Simplex Virus Type 1 Vaccine Strain. Journal of Virology, 2000, 74, 11137-11144.	3.4	51
51	Influence of Mucosal and Parenteral Immunization with a Replication-Defective Mutant of HSV-2 on Immune Responses and Protection from Genital Challenge. Virology, 1998, 243, 178-187.	2.4	104
52	Mechanisms of Immunization with a Replication-Defective Mutant of Herpes Simplex Virus 1. Virology, 1996, 220, 402-413.	2.4	69