Wu Hongjing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5064954/publications.pdf

Version: 2024-02-01

161 papers 11,449 citations

64 h-index 101 g-index

164 all docs

164
docs citations

times ranked

164

7018 citing authors

#	Article	IF	Citations
1	Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 607, 24-33.	5.0	72
2	Structure Engineering of Graphene Nanocages toward Highâ€Performance Microwave Absorption Applications. Advanced Optical Materials, 2022, 10, .	3.6	30
3	Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon, 2022, 186, 323-332.	5.4	57
4	In situ construction of Fe3Al@Al2O3 core-shell particles with excellent electromagnetic absorption. Journal of Colloid and Interface Science, 2022, 611, 306-316.	5.0	18
5	Synergistic Polarization Loss of MoS ₂ â€Based Multiphase Solid Solution for Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	116
6	Broadband high-performance microwave absorption of the single-layer Ti3C2T MXene. Journal of Materials Science and Technology, 2022, 115, 148-155.	5.6	58
7	Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Advanced Science, 2022, 9, e2105553.	5.6	422
8	Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. IScience, 2022, 25, 103925.	1.9	53
9	Anionâ€Dopingâ€Induced Vacancy Engineering of Cobalt Sulfoselenide for Boosting Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	96
10	Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. Journal of Colloid and Interface Science, 2022, 618, 129-140.	5.0	39
11	Enhancing the Low/Middleâ€Frequency Electromagnetic Wave Absorption of Metal Sulfides through F ^{â°} Regulation Engineering. Advanced Functional Materials, 2022, 32, .	7.8	67
12	A Flexible, Mechanically Strong, and Antiâ€Corrosion Electromagnetic Wave Absorption Composite Film with Periodic Electroconductive Patterns. Advanced Functional Materials, 2022, 32, .	7.8	54
13	Ti ₃ C ₂ T <i>_x</i> /MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	5.6	85
14	Facile synthesis of hierarchical MoS2/ZnS @ porous hollow carbon nanofibers for a stable Li metal anode. Journal of Colloid and Interface Science, 2022, 622, 347-356.	5.0	4
15	Defects control and origins of blue and green emissions in sol-gel ZnO thin films. Vacuum, 2022, 202, 111201.	1.6	21
16	Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 624, 505-514.	5.0	50
17	Oxygen Vacancyâ€Induced Dielectric Polarization Prevails in the Electromagnetic Waveâ€Absorbing Mechanism for Mnâ€Based MOFsâ€Derived Composites. Advanced Functional Materials, 2022, 32, .	7.8	172
18	Ferrite-based composites and morphology-controlled absorbers. Rare Metals, 2022, 41, 2943-2970.	3.6	22

#	Article	IF	CITATIONS
19	PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon, 2021, 173, 80-90.	5.4	88
20	Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chemical Engineering Journal, 2021, 408, 127313.	6.6	72
21	High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. Journal of Colloid and Interface Science, 2021, 586, 457-468.	5.0	80
22	Constructing and optimizing hollow ZnxFe3-xO4@polyaniline composites as high-performance microwave absorbers. Journal of Colloid and Interface Science, 2021, 584, 80-91.	5.0	31
23	Defect Induced Polarization Loss in Multiâ€Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application. Advanced Science, 2021, 8, 2004640.	5.6	195
24	Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective. Journal Physics D: Applied Physics, 2021, 54, 203001.	1.3	54
25	Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. Journal of Colloid and Interface Science, 2021, 588, 336-345.	5.0	105
26	Interfacial and defect polarization in MXene-like laminated spinel for electromagnetic wave absorption application. Journal of Colloid and Interface Science, 2021, 588, 813-825.	5.0	53
27	Lightweight Ni Foamâ€Based Ultraâ€Broadband Electromagnetic Wave Absorber. Advanced Functional Materials, 2021, 31, 2103436.	7.8	221
28	Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite. Chemical Engineering Journal, 2021, 411, 128601.	6.6	76
29	Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 591, 148-160.	5.0	62
30	Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 594, 424-434.	5.0	74
31	A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption. Advanced Functional Materials, 2021, 31, 2105018.	7.8	133
32	Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites. Composites Communications, 2021, 26, 100767.	3.3	54
33	Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 595, 1-5.	5.0	81
34	Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents. Journal of Materials Science and Technology, 2021, 82, 69-79.	5.6	25
35	Special issue on electromagnetic wave absorbing materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 25561-25561.	1.1	4
36	Simultaneous Manipulation of Interfacial and Defects Polarization toward Zn/Co Phase and Ion Hybrids for Electromagnetic Wave Absorption. Advanced Functional Materials, 2021, 31, 2106677.	7.8	137

#	Article	IF	CITATIONS
37	Core-shell structured Fe2O3/CeO2@MnO2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Mikrochimica Acta, 2021, 188, 337.	2.5	15
38	Sodium oxalate-induced hydrothermal synthesis of wood-texture-column-like NiCo2O4 with broad bandwidth electromagnetic wave absorption performance. Journal of Colloid and Interface Science, 2021, 600, 49-57.	5.0	42
39	Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. Journal of Colloid and Interface Science, 2021, 600, 288-298.	5.0	27
40	Tailoring high-electroconductivity carbon cloth coated by nickel cobaltate/nickel oxide: A case of transition from microwave shielding to absorption. Carbon, 2021, 183, 138-149.	5.4	62
41	Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. Journal of Materials Science and Technology, 2021, 92, 51-59.	5.6	45
42	Free-standing hollow carbon nanofibers scaffold with spherical nanocavities and lithiophilic N/ZnO heteroatoms as stable dendrite-free lithium metal anode. Applied Surface Science, 2021, 565, 150589.	3.1	16
43	Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. Journal of Colloid and Interface Science, 2021, 602, 834-845.	5.0	34
44	Regulating pH value synthesis of NiCo2O4 with excellent electromagnetic wave absorbing performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 26059-26073.	1.1	9
45	Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chemical Engineering Journal, 2020, 382, 122797.	6.6	182
46	Synthesis of Singleâ€Component Metal Oxides with Controllable Multiâ€Shelled Structure and their Morphologyâ€Related Applications. Chemical Record, 2020, 20, 102-119.	2.9	52
47	Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Applied Surface Science, 2020, 504, 144480.	3.1	92
48	Strong terahertz emission from copper oxides/silver micro thin film deposited on nanoparticles aggregation substrate. Applied Surface Science, 2020, 508, 145219.	3.1	9
49	Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105760.	3.8	133
50	Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Global Ecology and Biogeography, 2020, 29, 573-589.	2.7	66
51	NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Composites Part B: Engineering, 2020, 182, 107620.	5.9	122
52	Effective Cocatalyst Pt/PtO Nanodots on La ₂ O ₃ Microspheres for Degradation of Methyl Orange. Journal of Nanoscience and Nanotechnology, 2020, 20, 3140-3147.	0.9	13
53	Synthesis of a Carbon-Loaded Bi ₂ O ₂ CO ₃ /TiO ₂ Photocatalyst with Improved Photocatalytic Degradation of Methyl Orange Dye. Journal of Nanoscience and Nanotechnology, 2020, 20, 7653-7658.	0.9	12
54	Porous high entropy alloys for electromagnetic wave absorption. Journal of Magnetism and Magnetic Materials, 2020, 512, 167065.	1.0	39

#	Article	IF	CITATIONS
55	Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105959.	3.8	143
56	Glycine-assisted solution combustion synthesis of NiCo2O4 electromagnetic wave absorber with wide absorption bandwidth. Ceramics International, 2020, 46, 22313-22320.	2.3	28
57	Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 393, 124743.	6.6	152
58	High efficiency electromagnetic wave absorber derived from transition metal layered double hydroxides. Journal of Colloid and Interface Science, 2020, 579, 733-740.	5.0	45
59	Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance. Materials, 2020, 13, 107.	1.3	2
60	Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2020, 566, 21-32.	5.0	140
61	Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. Journal of Colloid and Interface Science, 2020, 566, 347-356.	5.0	84
62	Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Applied Surface Science, 2020, 515, 146132.	3.1	76
63	2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. Journal of Colloid and Interface Science, 2020, 574, 1-10.	5.0	84
64	Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance. Journal of Colloid and Interface Science, 2020, 576, 444-456.	5.0	11
65	Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Composites Part B: Engineering, 2019, 176, 107240.	5.9	177
66	Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Composites Part B: Engineering, 2019, 178, 107507.	5.9	99
67	High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Composites Part B: Engineering, 2019, 179, 107524.	5.9	84
68	Two-Step Solvothermal Synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs Hybrid with Enhanced Low Frequency Microwave Absorbing Performance. Nanomaterials, 2019, 9, 1601.	1.9	14
69	Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification. EPJ Applied Physics, 2019, 87, 20901.	0.3	14
70	A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. Journal of Materials Science: Materials in Electronics, 2019, 30, 10961-10984.	1.1	103
71	Pt/Ni0.17Zn0.83O hybrids with enhanced photocatalytic performance: Effect of reduction treatments. Results in Physics, 2019, 14, 102434.	2.0	7
72	Research on Grain Refinement in Hypoeutectic Al-Si Alloy during Solidification under an Alternating Electric Current Pulse. Metals, 2019, 9, 571.	1.0	7

#	Article	IF	CITATIONS
73	Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: From sphere to vesicle. Industrial Crops and Products, 2019, 135, 64-71.	2.5	19
74	Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange. Journal of Materials Science: Materials in Electronics, 2019, 30, 5158-5169.	1.1	20
75	Structure-microwave absorption performance correlations of GNPs/ZnO nanocomposite absorber: Synthesis, characteration and mechanism investigation. Ceramics International, 2019, 45, 13376-13384.	2.3	23
76	Synthesis and mechanism investigation of wide-bandwidth Ni@MnO2 NS foam microwave absorbent. Journal of Alloys and Compounds, 2019, 792, 945-952.	2.8	45
77	Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 8771-8776.	1.1	48
78	Thermally controllable Mie resonances in a water-based metamaterial. Scientific Reports, 2019, 9, 5417.	1.6	13
79	Bulk and Surface Characterization Techniques of TiO2 and TiO2-Doped Oxides. , 2019, , 57-86.		2
80	The Role of Electric Current-Associated Free Energy and Forced Convection on Grain Refinement in Pure Aluminum under Electropulsing. Materials, 2019, 12, 3846.	1.3	4
81	Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. Journal of Colloid and Interface Science, 2019, 533, 481-491.	5.0	194
82	Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Applied Surface Science, 2019, 464, 472-478.	3.1	123
83	Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Composites Part A: Applied Science and Manufacturing, 2019, 118, 302-311.	3.8	169
84	Graphene Plasmonics: A Platform for 2D Optics. Advanced Optical Materials, 2019, 7, 1800537.	3.6	139
85	Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red. Journal of Physics and Chemistry of Solids, 2019, 124, 289-295.	1.9	42
86	Photoinduced Polyacrylate Based Polymer Electrolyte for Quasi-solid State Dye Sensitized Solar Cell Application. Engineered Science, 2019, , .	1,2	3
87	Impact of morphology and dielectric property on the microwave absorbing performance of MoS 2 -based materials. Journal of Alloys and Compounds, 2018, 751, 34-42.	2.8	103
88	Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technology, 2018, 333, 153-159.	2.1	138
89	Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. Journal of Materials Science: Materials in Electronics, 2018, 29, 9740-9744.	1.1	11
90	Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine. Composites Part B: Engineering, 2018, 140, 83-90.	5.9	90

#	Article	IF	CITATIONS
91	Solid-state synthesis of ZnO nanorods coupled with reduced graphene oxide for photocatalytic application. Journal of Materials Science: Materials in Electronics, 2018, 29, 4888-4894.	1.1	9
92	Doping Strategy To Boost the Electromagnetic Wave Attenuation Ability of Hollow Carbon Spheres at Elevated Temperatures. ACS Sustainable Chemistry and Engineering, 2018, 6, 1539-1544.	3.2	59
93	Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation. Nanoscale Research Letters, 2018, 13, 50.	3.1	37
94	Octahedron shaped lead sulfide nanocrystals as counter electrodes for quantum dot sensitized solar cells. Functional Materials Letters, 2018, 11, 1850025.	0.7	7
95	Design of spinous Ni/N-GN nanocomposites as novel magnetic/dielectric microwave absorbents with high-efficiency absorption performance and thin thickness. Journal of Materials Science, 2018, 53, 9034-9045.	1.7	16
96	Ternary system of ZnO nanorods/reduced graphene oxide/CulnS2 quantum dots for enhanced photocatalytic performance. Journal of Alloys and Compounds, 2018, 734, 196-203.	2.8	48
97	Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chemical Engineering Journal, 2018, 333, 519-528.	6.6	389
98	Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 1232-1237.	1.1	44
99	Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chinese Physics B, 2018, 27, 117806.	0.7	77
100	Preparation of Polyaniline@MoS ₂ @Fe ₃ O ₄ Nanowires with a Wide Band and Small Thickness toward Enhancement in Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 5865-5875.	2.4	69
101	A Review of Tunable Acoustic Metamaterials. Applied Sciences (Switzerland), 2018, 8, 1480.	1.3	94
102	Cr2O3 nanocrystal anode materials with improved cyclic stability for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11795-11800.	1.1	7
103	ZnCo2O4 nanorods as a novel class of high-performance adsorbent for removal of methyl blue. Advanced Powder Technology, 2018, 29, 1933-1939.	2.0	29
104	Controlling optical polarization conversion with Ge ₂ Sb ₂ Te ₅ -based phase-change dielectric metamaterials. Nanoscale, 2018, 10, 12054-12061.	2.8	70
105	Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement. Nanomaterials, 2018, 8, 242.	1.9	56
106	Recent Progresses of High-Temperature Microwave-Absorbing Materials. Nano, 2018, 13, 1830005.	0.5	136
107	Progress in low-frequency microwave absorbing materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 17122-17136.	1.1	150
108	La0.6Sr0.4Co0.2Fe0.79M0.01O3â~Î~ (M = Ni, Pd) perovskites synthesized by Citrate-EDTA method: Oxygen vacancies effect on electrochemical properties. Advanced Powder Technology, 2018, 29, 2804-2812.	2.0	11

#	Article	IF	Citations
109	Influence of interface combination of RGO-photosensitized SnO 2 @RGO core-shell structures on their photocatalytic performance. Applied Surface Science, 2017, 391, 627-634.	3.1	77
110	Facile synthesis of Co 3 O 4 spheres and their unexpected high specific discharge capacity for Lithium-ion batteries. Applied Surface Science, 2017, 416, 338-343.	3.1	37
111	Preparation of Ag coating reduced graphene oxide and its application as a conductive filler to polyacrylate. Journal of Materials Science: Materials in Electronics, 2017, 28, 14809-14817.	1.1	3
112	A Special Section on Nanomaterials for Environmental Catalysis and Energy Production. Journal of Nanoscience and Nanotechnology, 2017, 17, 3629-3631.	0.9	1
113	Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. Advances in Colloid and Interface Science, 2017, 243, 77-85.	7.0	83
114	Zinc ferrite composite material with controllable morphology and its applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 125-138.	1.7	103
115	Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-Like Nanotubes. Catalysts, 2017, 7, 256.	1.6	47
116	Dielectric and Magnetic Loss Behavior of Nanooxides. , 2017, , 301-319.		4
117	Multishelled Metal Oxide Hollow Spheres: Easy Synthesis and Formation Mechanism. Chemistry - A European Journal, 2016, 22, 8864-8871.	1.7	119
118	Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study. Scientific Reports, 2016, 6, 26625.	1.6	50
119	Amorphous Fe B100â^' nanostructures: Facile synthesis, magnetic properties and their applications as enhanced microwave absorbers at S- and C-bands. Advanced Powder Technology, 2016, 27, 704-710.	2.0	17
120	A Comparable Study on the Microwave Absorption Properties of Al/Fe/Co Doped OMC/Paraffin Wax Composites. Nano, 2016, 11, 1650014.	0.5	7
121	Multi-shelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances. Journal of Alloys and Compounds, 2016, 685, 8-14.	2.8	61
122	Facile synthesis and application of multi-shelled SnO ₂ hollow spheres in lithium ion battery. RSC Advances, 2016, 6, 58069-58076.	1.7	85
123	Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO 2. Materials Science in Semiconductor Processing, 2016, 41, 6-11.	1.9	101
124	B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1â°'xSrxCo1â^'yFeyO3â€'δ Perovskite Oxides as Cathodes for IT-SOFCs. Catalysts, 2015, 5, 366-391.	1.6	48
125	Co ₃ O ₄ particles grown over nanocrystalline CeO ₂ : influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catalysis Science and Technology, 2015, 5, 1888-1901.	2.1	63
126	Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Materials Letters, 2015, 144, 157-160.	1.3	155

#	Article	IF	CITATIONS
127	Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres. Powder Technology, 2015, 281, 20-27.	2.1	70
128	Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe–Ni alloy/ordered mesoporous carbon composite. Advanced Powder Technology, 2015, 26, 1250-1255.	2.0	45
129	Co ²⁺ /Co ³⁺ ratio dependence of electromagnetic wave absorption in hierarchical NiCo ₂ O ₄ –CoNiO ₂ hybrids. Journal of Materials Chemistry C, 2015, 3, 7677-7690.	2.7	405
130	Design and wide range microwave absorption of porous Co–Co3O4 hybrid hollow sphere with magnetic multi-resonance mechanisms. Materials Characterization, 2015, 103, 1-10.	1.9	58
131	Microwave Absorption Properties of Fe-Doped Ordered Mesoporous Carbon (CMK-3)/Silica Matrix Nanocomposites with Magnetic Multi-Resonance Mechanisms. Nano, 2015, 10, 1550110.	0.5	8
132	Synthesis and characterization of \hat{l}^3 -Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. Journal of Alloys and Compounds, 2015, 652, 346-350.	2.8	188
133	Facile synthesis and optical properties of Prussian Blue microcubes and hollow Fe2O3 microboxes. Materials Science in Semiconductor Processing, 2015, 30, 476-481.	1.9	77
134	Peculiar porous \hat{l}_{\pm} -Fe2O3, \hat{l}_{\pm} -Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technology, 2015, 269, 443-451.	2.1	332
135	Preparation, characterization and microwave absorption properties of bamboo-like \hat{l}^2 -SiC nanowhiskers by molten-salt synthesis. Journal of Materials Science: Materials in Electronics, 2014, 25, 5302-5308.	1.1	49
136	MICROWAVE ABSORPTION BEHAVIOR OF MESOPOROUS TRANSITION METAL OXIDE TEMPLATED FROM SBA-15 AND KIT-6. International Journal of Modern Physics B, 2014, 28, 1450037.	1.0	1
137	EFFECT OF CARBONIZATION TEMPERATURE ON DIELECTRIC AND MICROWAVE ABSORBING PROPERTIES OF COBALT DOPED MESOPOROUS CARBON COMPOSITES. Nano, 2014, 09, 1450033.	0.5	8
138	Synthesis and significantly enhanced microwave absorption properties of hematite dendrites/polyaniline nanocomposite. Applied Physics A: Materials Science and Processing, 2014, 115, 1299-1307.	1.1	40
139	Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix. Applied Surface Science, 2014, 290, 388-397.	3.1	40
140	Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Applied Surface Science, 2014, 288, 398-404.	3.1	26
141	Facile synthesis, magnetic and optical properties of double-shelled Co3O4 hollow microspheres. Advanced Powder Technology, 2014, 25, 1780-1785.	2.0	22
142	Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere. Materials Characterization, 2014, 97, 18-26.	1.9	73
143	Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MO (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Applied Catalysis B: Environmental, 2014, 156-157, 350-361.	10.8	141
144	Electromagnetic Interference (EMI) Shielding of Ordered Mesoporous Carbon (OMC)/Paraffin Composites. Journal of Nanoscience and Nanotechnology, 2014, 14, 6016-6021.	0.9	1

#	Article	IF	CITATIONS
145	Flower-like $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Fe $\langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle $ ordered mesoporous carbon nanocomposite and its enhanced microwave absorption property. Materials Research Innovations, 2014, 18, 273-279.	1.0	12
146	Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catalysis Science and Technology, 2013, 3, 3085.	2.1	318
147	Enhanced Microwave Absorption Properties of α-Fe2O3-Filled Ordered Mesoporous Carbon Nanorods. Materials, 2013, 6, 1520-1529.	1.3	45
148	Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems. Catalysts, 2013, 3, 563-583.	1.6	137
149	Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs). Catalysts, 2013, 3, 774-793.	1.6	28
150	Enhanced absorption properties of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorbers. Chinese Physics B, 2013, 22, 044101.	0.7	4
151	Microwave absorption properties of CeO2 and Zn-modified CeO2 microstructures. Applied Surface Science, 2012, 258, 10047-10052.	3.1	45
152	Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. Journal of Alloys and Compounds, 2012, 525, 82-86.	2.8	99
153	Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1649-1654.	1.7	27
154	Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption. Applied Physics A: Materials Science and Processing, 2012, 108, 439-446.	1.1	57
155	Electromagnetic and microwave-absorbing properties of highly ordered mesoporous carbon supported by gold nanoparticles. Materials Chemistry and Physics, 2012, 133, 965-970.	2.0	42
156	Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 476-482.	1.7	36
157	Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst. Catalysis Communications, 2011, 12, 859-865.	1.6	121
158	Shape effect of microstructured CeO2 with various morphologies on CO catalytic oxidation. Catalysis Communications, 2011, 12, 1374-1379.	1.6	41
159	Catalytic oxidation of toluene and p-xylene using gold supported on Co3O4 catalyst prepared by colloidal precipitation method. Journal of Molecular Catalysis A, 2011, 351, 188-195.	4.8	68
160	Complete Benzene Oxidation over Colloidal Gold Catalysts Supported on Nanostructure Zinc Oxide. Advanced Materials Research, 0, 96, 21-27.	0.3	3
161	Correct establishment of structure $\hat{a}\in \hat{a}$ activity relationship of flexible electromagnetic wave absorber. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	0