List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/506489/publications.pdf Version: 2024-02-01

FELIX I DANILOV

#	Article	IF	CITATIONS
1	Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochimica Acta, 1999, 45, 713-720.	2.6	156
2	Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 2002, 527, 56-64.	1.9	122
3	Electrosynthesis and Physicochemical Properties of PbO[sub 2] Films. Journal of the Electrochemical Society, 2002, 149, C445.	1.3	112
4	Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media. Journal of Electroanalytical Chemistry, 2002, 534, 1-12.	1.9	112
5	Electrodeposition of lead dioxide from methanesulfonate solutions. Journal of Power Sources, 2009, 191, 103-110.	4.0	104
6	Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochimica Acta, 2009, 54, 5666-5672.	2.6	95
7	Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits. Applied Surface Science, 2011, 257, 8048-8053.	3.1	89
8	Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochimica Acta, 2000, 45, 4341-4350.	2.6	77
9	Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages. Clean Technologies and Environmental Policy, 2014, 16, 1201-1206.	2.1	76
10	Composite PbО2–TiO2 materials deposited from colloidal electrolyte: Electrosynthesis, and physicochemical properties. Electrochimica Acta, 2009, 54, 5239-5245.	2.6	75
11	Electrocatalytic activity of composite Fe/TiO2 electrodeposits for hydrogen evolution reaction in alkaline solutions. International Journal of Hydrogen Energy, 2016, 41, 7363-7372.	3.8	67
12	Kinetics of lead dioxide electrodeposition from nitrate solutions containing colloidal TiO2. Journal of Electroanalytical Chemistry, 2009, 632, 192-196.	1.9	57
13	Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24604-24616.	3.8	53
14	Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride. Journal of Molecular Liquids, 2015, 212, 716-722.	2.3	52
15	Electrodeposition of lead dioxide at an Au electrode. Electrochimica Acta, 1995, 40, 2803-2807.	2.6	51
16	Unusual "chemical" mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath. Electrochemistry Communications, 2012, 17, 85-87.	2.3	49
17	Electropolishing of aluminium in a deep eutectic solvent. Surface and Coatings Technology, 2019, 375, 143-149.	2.2	48
18	Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath. Thin Solid Films, 2011, 520, 380-383.	0.8	47

#	Article	IF	CITATIONS
19	Effects of temperature and water content on physicochemical properties of ionic liquids containing CrCl 3 · x H 2 O and choline chloride. Journal of Molecular Liquids, 2016, 223, 48-53.	2.3	45
20	Choline chloride based ionic liquids containing nickel chloride: Physicochemical properties and kinetics of Ni(II) electroreduction. Electrochimica Acta, 2017, 245, 133-145.	2.6	42
21	Mechanism of Electrodeposition of Lead Dioxide from Nitrate Solutions. Russian Journal of Electrochemistry, 2003, 39, 615-621.	0.3	40
22	Nafion effect on the lead dioxide electrodeposition kinetics. Russian Journal of Electrochemistry, 2007, 43, 118-120.	0.3	34
23	Physicochemical properties of ionic liquid mixtures containing choline chloride, chromium (III) chloride and water: effects of temperature and water content. Ionics, 2017, 23, 637-643.	1.2	34
24	Electrocatalytic activity of anodes in reference to Cr(III) oxidation reaction. Electrochimica Acta, 1993, 38, 437-440.	2.6	33
25	Improving hardness and tribological characteristics of nanocrystalline Cr–C films obtained from Cr(III) plating bath using pulsed electrodeposition. International Journal of Refractory Metals and Hard Materials, 2012, 31, 281-283.	1.7	33
26	Electrodeposition of Nanocrystalline Nickel Coatings from a Deep Eutectic Solvent with Water Addition. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 1131-1138.	0.3	29
27	Enhancement of the surface characteristics of Ti-based biomedical alloy by electropolishing in environmentally friendly deep eutectic solvent (Ethaline). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126125.	2.3	28
28	Activation energy of electrochemical reaction measured at a constant value of electrode potential. Journal of Electroanalytical Chemistry, 2011, 651, 105-110.	1.9	26
29	Electrodeposition of Ni–TiO2 Composite Coatings Using Electrolyte Based on a Deep Eutectic Solvent. Surface Engineering and Applied Electrochemistry, 2019, 55, 138-149.	0.3	26
30	Electroplating of chromium coatings from Cr(III)-based electrolytes containing water soluble polymer. Protection of Metals, 2006, 42, 560-569.	0.2	23
31	Electrodeposition of Fe and composite Fe/ZrO2 coatings from a methanesulfonate bath. Surface Engineering and Applied Electrochemistry, 2015, 51, 65-75.	0.3	23
32	Kinetics and Mechanism of Chromium Electroplating from Cr(III) Baths. Protection of Metals, 2001, 37, 223-228.	0.2	21
33	PbO2-TiO2 composite electrodes. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 327-332.	0.3	21
34	Thick chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid. Metal Finishing, 2011, 109, 33-37.	0.1	21
35	Trivalent chromium electrodeposition using a deep eutectic solvent. Anti-Corrosion Methods and Materials, 2018, 65, 499-505.	0.6	21
36	Unusually high current efficiency of nanocrystalline Cr electrodeposition process from trivalent chromium bath. Surface Engineering, 2011, 27, 690-692.	1.1	20

#	Article	IF	CITATIONS
37	Electrodeposition of PbO2-ZrO2 composite materials. Russian Journal of Electrochemistry, 2008, 44, 1251-1256.	0.3	18
38	Kinetics of nickel electroplating from methanesulfonate electrolyte. Russian Journal of Electrochemistry, 2011, 47, 1035-1042.	0.3	17
39	Electrodeposition of hard iron-zirconia dioxide composite coatings from a methanesulfonate electrolyte. Russian Journal of Applied Chemistry, 2013, 86, 1735-1740.	0.1	16
40	Electrocatalytic processes on Pb/PbO2 electrodes at high anodic potential. Electrochimica Acta, 1994, 39, 1603-1605.	2.6	15
41	Oxygen evolution on lead dioxide modified with fluorine and iron. Russian Journal of Electrochemistry, 2000, 36, 1216-1220.	0.3	15
42	Kinetic Regularities Governing the Reaction of Electrodeposition of Iron from Solutions of Citrate Complexes of Iron(III). Russian Journal of Electrochemistry, 2005, 41, 1282-1289.	0.3	15
43	Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 2014, 50, 293-296.	0.3	15
44	Electrodeposition of nanocrystalline chromium coatings from Cr(III)-based electrolyte using pulsed current. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47, 598-605.	0.3	14
45	Antifriction coatings of Pb–Sn–Cu alloy electro-deposited from methanesulphonate bath. Transactions of the Institute of Metal Finishing, 2011, 89, 151-154.	0.6	13
46	Application of dimensional analysis and similarity theory for simulation of electrode kinetics described by the Marcus–Hush–Chidsey formalism. Journal of Electroanalytical Chemistry, 2012, 669, 50-54.	1.9	13
47	Electrodeposition of composite Fe–TiO2 coatings from methanesulfonate electrolyte. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 532-537.	0.3	13
48	Electrolytic Deposition of Hard Chromium Coatings from Electrolyte Based on Deep Eutectic Solvent. Russian Journal of Applied Chemistry, 2018, 91, 1106-1111.	0.1	13
49	The influence of various factors on corrosion of mild steel in deep eutectic solvents. Materials Today: Proceedings, 2019, 6, 232-236.	0.9	13
50	Electrodeposition of lead–tin alloy from methanesulphonate bath containing organic surfactants. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 697-703.	0.3	12
51	Kinetics and mechanism of chromium electrodeposition from methanesulfonate solutions of Cr(III) salts. Surface Engineering and Applied Electrochemistry, 2014, 50, 384-389.	0.3	12
52	Fe/TiO 2 composite coatings modified by ceria layer: Electrochemical synthesis using environmentally friendly methanesulfonate electrolytes and application as photocatalysts for organic dyes degradation. Journal of Environmental Chemical Engineering, 2017, 5, 136-146.	3.3	12
53	The inhibiting effect of organic substances at polycrystalline and amalgam electrodes. Journal of Electroanalytical Chemistry, 2003, 552, 69-76.	1.9	11
54	Applying a theory of generalized variables to electrochemical kinetics: Interpreting the results of studying chromium deposition from Cr(III) baths. Protection of Metals, 2007, 43, 398-406.	0.2	11

#	Article	IF	CITATIONS
55	Electrodeposition of iron/titania composite coatings from methanesulfonate electrolyte. Russian Journal of Applied Chemistry, 2014, 87, 283-288.	0.1	11
56	Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds. Materials Science, 2011, 46, 647-652.	0.3	10
5 7	Electroplating of wear-resistant nanocrystalline coatings from a bath containing basic chromium(III) sulfate (chrome tanning agent). Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 299-303.	0.3	10
58	Fabrication and characterization of multifunctional Fe/TiO2 composite coatings. Materials Research Bulletin, 2018, 100, 32-41.	2.7	10
59	Voltammetry study of Cr(III)/Cr(II) system in aqueous methanesulfonate solutions. Journal of Electroanalytical Chemistry, 2011, 661, 213-218.	1.9	9
60	Electrodeposition of nanocrystalline chromium-carbon alloys from electrolyte based on trivalent chromium sulfate using pulsed current. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 328-333.	0.3	9
61	Electrode processes occurring during the electrodeposition of chromium-carbon coatings from solutions of Cr(III) salts with carbamide and formic acid additions. Russian Journal of Electrochemistry, 2013, 49, 475-482.	0.3	9
62	PbO2-TiO2 composites: Electrosynthesis and physicochemical properties. Russian Journal of Applied Chemistry, 2008, 81, 994-999.	0.1	8
63	Voltammetry study of Cr(III)/Cr(II) system in methanesulfonate and sulfate solutions: Temperature dependences. Journal of Electroanalytical Chemistry, 2013, 689, 269-275.	1.9	8
64	Ni-Co alloy coatings obtained from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 639-642.	0.3	8
65	Influence of Methylsulfonate Anions on the Structure of Electrolytic Cobalt Coatings. Materials Science, 2016, 52, 396-401.	0.3	8
66	The corrosion-protective traits of electroplated multilayer zinc-iron-chromium deposits. Metal Finishing, 2010, 108, 28-32.	0.1	7
67	Structure and properties of Ni—Co alloys electrodeposited from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 812-816.	0.3	7
68	Actual activation energy of electrochemical reactions at stage charge transfer. Russian Journal of Electrochemistry, 2010, 46, 188-195.	0.3	6
69	Oxidation of Sn(II) in methanesulfonate electrolytes in presence of antioxidants. Russian Journal of Applied Chemistry, 2010, 83, 752-754.	0.1	6
70	Estimation of the protective ability of chromium coatings deposited from sulfate and methanesulfonate electrolytes based on Cr(III). Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 672-678.	0.3	6
71	Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 2016, 52, 494-499. 	0.3	6
72	Electrochemical synthesis and characterization of electrocatalytic materials for hydrogen production using Cr(III) baths based on a deep eutectic solvent. Materials Letters, 2022, 313, 131800.	1.3	6

#	Article	IF	CITATIONS
73	Multistep electrochemical reactions involving transport of intermediates between the near-electrode layer and the bulk solution: A kinetics analysis based on theory of generalized variables (theory of) Tj ETQq1 J	. 0.78 0314 rg	gBT5/Overlock
74	Actual activation energy of electrode process under mixed kinetics conditions. Russian Journal of Electrochemistry, 2009, 45, 1105-1114.	0.3	5
75	Hard chromium electrodeposition from a trivalent chromium bath containing water-soluble polymer. Turkish Journal of Chemistry, 2014, 38, 50-55.	0.5	5
76	Electrodeposition of composite materials PbO2-Ti and their physicochemical properties. Russian Journal of Electrochemistry, 2009, 45, 778-782.	0.3	4
77	Electrodeposition of Ni–ZrO2 Nanocomposites from Methanesulfonate Electrolytes. Materials Science, 2016, 51, 877-884.	0.3	4
78	Corrosion resistance and protective properties of chromium coatings electrodeposited from an electrolyte based on deep eutectic solvent. Functional Materials, 2018, 25, 539-545.	0.4	4
79	Multistep Electrochemical Reactions Involving Transport of Intermediates between the Near-electrode Layer and the Bulk Solution: The Kinetics of Two-Step Processes in Conditions of Non-steady-state Diffusion. Russian Journal of Electrochemistry, 2005, 41, 1274-1281.	0.3	3
80	Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes. Russian Journal of Electrochemistry, 2015, 51, 294-298.	0.3	3
81	Electrochemical synthesis and properties of iron–titanium dioxide composite coatings. Russian Journal of Applied Chemistry, 2017, 90, 1148-1153.	0.1	3
82	Properties of Ni-TiO ₂ composites electrodeposited from methanesulfonate electrolyte. Functional Materials, 2017, 24, 005-475.	0.4	3
83	Hydrogen evolution reaction on Cr–C electrocatalysts electrodeposited from a choline chloride based trivalent chromium plating bath. Voprosy Khimii I Khimicheskoi Tekhnologii, 2019, , 61-66.	0.1	3
84	Chromium electrodeposition using electrolytes based on trivalent chromium compounds: a review. Voprosy Khimii I Khimicheskoi Tekhnologii, 2020, , 4-29.	0.1	3
85	Theory of generalized variables in electrochemical kinetics: Simulation of the slow discharge theory equations. Russian Journal of Electrochemistry, 2005, 41, 104-107.	0.3	2
86	Activation energy of electrochemical reaction at a constant value of electrode potential. Russian Journal of Electrochemistry, 2009, 45, 1037-1040.	0.3	2
87	Parameters of the double electric layer and n-butanol adsorption on lead in methanesulfonate solutions. Russian Journal of Electrochemistry, 2012, 48, 936-940.	0.3	2
88	Electrolytic Codeposition of Nickel and Phosphorus from Methanesulfonate Electrolyte. Surface Engineering and Applied Electrochemistry, 2018, 54, 125-130.	0.3	2
89	Multistage Electrochemical Reactions with the Transfer of Intermediates between Near-Electrode Layer and Bulk Solution: Analysis of a Kinetic Model and Computer-Aided Modeling. Russian Journal of Electrochemistry, 2004, 40, 1-9.	0.3	1
90	Effect of adsorption of polyhexamethyleneguanidine derivatives on the formation rate, morphology, and phase composition of carbonate deposits. Russian Journal of Applied Chemistry, 2014, 87, 1836-1841.	0.1	1

#	Article	IF	CITATIONS
91	Kinetics study and influence of water-soluble polymer on the electrodeposition of iron from a citrate-chloride electrolyte on the basis of Fe(III). Turkish Journal of Chemistry, 2015, 39, 610-619.	0.5	1
92	Effects of water and sodium dodecyl sulfate additives on Cr(III) ions electroreduction in a deep eutectic solvent. Voprosy Khimii I Khimicheskoi Tekhnologii, 2021, , 110-116.	0.1	1
93	КІÐЕТÐ~КЕІ МЕХÐÐÐ†Ð—Đœ ЕЛЕКТÐОХІМІЧÐОГО Ð'Ð~ДІЛЕÐÐÐ [~] КĐ~£	∂jÐÐ₽У÷	лУÐ−ÐÐ
94	A pulsed coulostatic method of evaluating the protective properties and corrosion resistance of coatings. Soviet Materials Science, 1988, 24, 229-231.	0.0	0
95	Improvement of the anticorrosive properties of galvanic metallic coatings. Materials Science, 1995, 30, 607-614.	0.3	0
96	Multistage Electrochemical Reactions with the Transfer of Intermediates between the Near-Electrode Layer and the Bulk Solution: The Accumulation of the Intermediates and the Current Redistribution between the Stages during Electrolysis. Russian Journal of Electrochemistry, 2004, 40, 456-459.	0.3	0
97	Anodic treatment of tin in alkaline electrolytes. Russian Journal of Applied Chemistry, 2007, 80, 74-77.	0.1	0
98	Adsorption and inhibition properties of associates based on water-soluble polymers. Russian Journal of Electrochemistry, 2010, 46, 1175-1181.	0.3	0
99	Effect of Ca2+ and Zn2+ ions on the adsorption and inhibitory properties of polyhexamethyleneguanidine derivatives. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 916-919.	0.3	0