Radley Horton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5064812/publications.pdf

Version: 2024-02-01

88 papers

7,378 citations

43 h-index 83 g-index

90 all docs 90 docs citations

90 times ranked 8074 citing authors

#	Article	IF	CITATIONS
1	The Influence of Intraseasonal Oscillations on Humid Heat in the Persian Gulf and South Asia. Journal of Climate, 2022, 35, 4309-4329.	1.2	3
2	Concentrated and Intensifying Humid Heat Extremes in the IPCC AR6 Regions. Geophysical Research Letters, 2022, 49, .	1.5	27
3	Habitat use as indicator of adaptive capacity to climate change. Diversity and Distributions, 2021, 27, 655-667.	1.9	9
4	Life-cycle assessment of climate change impact on time-dependent carbon-footprint of asphalt pavement. Transportation Research, Part D: Transport and Environment, 2021, 91, 102697.	3.2	17
5	Assessing human habitability and migration. Science, 2021, 372, 1279-1283.	6.0	52
6	Drivers of exceptional coastal warming in the northeastern United States. Nature Climate Change, 2021, 11, 854-860.	8.1	23
7	Recent Increases in Exposure to Extreme Humidâ∈Heat Events Disproportionately Affect Populated Regions. Geophysical Research Letters, 2021, 48, e2021GL094183.	1.5	41
8	Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2021, 2, 683-691.	6.2	100
9	On the Controlling Factors for Globally Extreme Humid Heat. Geophysical Research Letters, 2021, 48, e2021GL096082.	1.5	17
10	Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nature Climate Change, 2020, 10, 48-53.	8.1	164
11	Net benefits to US soy and maize yields from intensifying hourly rainfall. Nature Climate Change, 2020, 10, 819-822.	8.1	45
12	Enhancing New York City's resilience to sea level rise and increased coastal flooding. Urban Climate, 2020, 33, 100654.	2.4	23
13	The emergence of heat and humidity too severe for human tolerance. Science Advances, 2020, 6, eaaw1838.	4.7	355
14	Understanding and managing connected extreme events. Nature Climate Change, 2020, 10, 611-621.	8.1	273
15	Modeling coastal flood risk and adaptation response under future climate conditions. Climate Risk Management, 2020, 29, 100233.	1.6	22
16	A typology of compound weather and climate events. Nature Reviews Earth & Environment, 2020, 1, 333-347.	12.2	536
17	Daily Autocorrelation and Mean Temperature/Moisture Rise as Determining Factors for Future Heat-Wave Patterns in the United States. Journal of Applied Meteorology and Climatology, 2020, 59, 1735-1754.	0.6	4
18	Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes. Environmental Research Letters, 2019, 14, 114029.	2.2	54

#	Article	IF	Citations
19	Future Hot and Dry Years Worsen Nile Basin Water Scarcity Despite Projected Precipitation Increases. Earth's Future, 2019, 7, 967-977.	2.4	79
20	Nonlinear increases in extreme temperatures paradoxically dampen increases in extreme humid-heat. Environmental Research Letters, 2019, 14, 084003.	2.2	25
21	Rising Sea Levels: Helping Decision-Makers Confront the Inevitable. Coastal Management, 2019, 47, 127-150.	1.0	23
22	Highâ€resolution projections of extreme heat in New York City. International Journal of Climatology, 2019, 39, 4721-4735.	1.5	17
23	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	1.8	21
24	New York City Panel on Climate Change 2019 Report Chapter 3: Sea Level Rise. Annals of the New York Academy of Sciences, 2019, 1439, 71-94.	1.8	22
25	Towards reliable Arctic sea ice prediction using multivariate data assimilation. Science Bulletin, 2019, 64, 63-72.	4.3	27
26	Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environmental Research Letters, 2018, 13, 014001.	2.2	244
27	Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China. Environment International, 2018, 112, 1-9.	4.8	44
28	Blue Water Tradeâ€Offs With Vegetation in a CO ₂ â€Enriched Climate. Geophysical Research Letters, 2018, 45, 3115-3125.	1.5	46
29	Evolution of 21st Century Sea Level Rise Projections. Earth's Future, 2018, 6, 1603-1615.	2.4	90
30	The Science of Adaptation to Extreme Heat. , 2018, , 89-103.		9
31	Impact of climate change on heat-related mortality in Jiangsu Province, China. Environmental Pollution, 2017, 224, 317-325.	3.7	73
32	Total and Extreme Precipitation Changes over the Northeastern United States. Journal of Hydrometeorology, 2017, 18, 1783-1798.	0.7	99
33	Influence of internal variability on population exposure to hydroclimatic changes. Environmental Research Letters, 2017, 12, 044007.	2.2	22
34	Considerations in managing the fill rate of the Grand Ethiopian Renaissance Dam Reservoir using a system dynamics approach. Journal of Defense Modeling and Simulation, 2017, 14, 33-43.	1.2	10
35	Threats to North American forests from southern pine beetle with warming winters. Nature Climate Change, 2017, 7, 713-717.	8.1	109
36	Evolving Understanding of Antarctic Iceâ€Sheet Physics and Ambiguity in Probabilistic Seaâ€Level Projections. Earth's Future, 2017, 5, 1217-1233.	2.4	269

#	Article	IF	CITATIONS
37	Spatiotemporal Patterns and Synoptics of Extreme Wetâ€Bulb Temperature in the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,108.	1.2	54
38	The impacts of rising temperatures on aircraft takeoff performance. Climatic Change, 2017, 144, 381-388.	1.7	56
39	Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE, 2017, 12, e0184951.	1.1	31
40	Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple Population, Adaptation, and Climate Scenarios. Environmental Health Perspectives, 2017, 125, 47-55.	2.8	71
41	Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Climate Change Management, 2017, , 209-223.	0.6	2
42	Assessment of Arctic and Antarctic sea ice predictability in CMIP5Âdecadal hindcasts. Cryosphere, 2016, 10, 2429-2452.	1.5	20
43	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	1.3	31
44	Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries. Transactions of the ASABE, 2016, 59, 1715-1731.	1.1	8
45	Reply to "Comment on â€~Climate Change and the Impact of Extreme Temperatures on Aviation'― Wea Climate, and Society, 2016, 8, 207-208.	ther 0.5	1
46	A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports, 2016, 2, 242-259.	2.8	284
47	Aging Will Amplify the Heat-related Mortality Risk under a Changing Climate: Projection for the Elderly in Beijing, China. Scientific Reports, 2016, 6, 28161.	1.6	67
48	Development and Evaluation of High-Resolution Climate Simulations over the Mountainous Northeastern United States. Journal of Hydrometeorology, 2016, 17, 881-896.	0.7	15
49	Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nature Climate Change, 2016, 6, 696-700.	8.1	105
50	Climate change and fetal health: The impacts of exposure to extreme temperatures in New York City. Environmental Research, 2016, 144, 158-164.	3.7	57
51	Projected changes in extreme temperature events based on the NARCCAP model suite. Geophysical Research Letters, 2015, 42, 7722-7731.	1.5	34
52	Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China. Scientific Reports, 2015, 5, 11441.	1.6	47
53	Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environmental Research Letters, 2015, 10, 054017.	2.2	39
54	Climate change and the impact of extreme temperatures on aviation. , 2015, , .		3

#	Article	IF	Citations
55	Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach. Environmental Health, 2015, 14, 85.	1.7	63
56	Climate Change and the Impact of Extreme Temperatures on Aviation. Weather, Climate, and Society, 2015, 7, 94-102.	0.5	65
57	Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections. Journal of Climate, 2015, 28, 838-852.	1.2	44
58	Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 2015, 5, 1114-1120.	8.1	97
59	New York City Panel on Climate Change 2015 ReportChapter 1: Climate Observations and Projections. Annals of the New York Academy of Sciences, 2015, 1336, 18-35.	1.8	48
60	New York City Panel on Climate Change 2015 Report Chapter 4: Dynamic Coastal Flood Modeling. Annals of the New York Academy of Sciences, 2015, 1336, 56-66.	1.8	48
61	New York City Panel on Climate Change 2015 Report Chapter 2: Sea Level Rise and Coastal Storms. Annals of the New York Academy of Sciences, 2015, 1336, 36-44.	1.8	91
62	Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities. International Journal of Environmental Research and Public Health, 2014, 11, 11371-11383.	1.2	35
63	Beyond Hurricane Sandy: What Might the Future Hold for Tropical Cyclones in the North Atlantic?. Journal of Extreme Events, 2014, 01, 1450007.	1.2	13
64	Enhancing Climate Resilience at NASA Centers: A Collaboration between Science and Stewardship. Bulletin of the American Meteorological Society, 2014, 95, 1351-1363.	1.7	22
65	Impacts of Projected Climate Change over the Lake Champlain Basin in Vermont. Journal of Applied Meteorology and Climatology, 2014, 53, 1861-1875.	0.6	30
66	Probabilistic 21st and 22nd century seaâ€level projections at a global network of tideâ€gauge sites. Earth's Future, 2014, 2, 383-406.	2.4	672
67	Multi-factor impact analysis of agricultural production in Bangladesh with climate change. Global Environmental Change, 2013, 23, 338-350.	3.6	114
68	Projections of seasonal patterns in temperature- related deaths for Manhattan, NewÂYork. Nature Climate Change, 2013, 3, 717-721.	8.1	143
69	Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology, 2013, 170, 132-145.	1.9	91
70	Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global and Planetary Change, 2013, 100, 320-332.	1.6	194
71	Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12571-12576.	3.3	138
72	The Practitioner's Dilemma: How to Assess the Credibility of Downscaled Climate Projections. Eos, 2013, 94, 424-425.	0.1	103

#	Article	IF	CITATIONS
73	Projected Heat-Related Mortality in the U.S. Urban Northeast. International Journal of Environmental Research and Public Health, 2013, 10, 6734-6747.	1.2	58
74	Reply to Li and Wu: Arctic sea ice and winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1899-E1900.	3.3	26
75	Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4074-4079.	3.3	718
76	Urban climate. , 2011, , 43-82.		24
77	Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City. Journal of Applied Meteorology and Climatology, 2011, 50, 2247-2266.	0.6	59
78	Developing coastal adaptation to climate change in the New York City infrastructure-shed: process, approach, tools, and strategies. Climatic Change, 2011, 106, 93-127.	1.7	180
79	Chapter 3: Climate observations and projections. Annals of the New York Academy of Sciences, 2010, 1196, 41-62.	1.8	28
80	Chapter 7: Indicators and monitoring. Annals of the New York Academy of Sciences, 2010, 1196, 127-142.	1.8	9
81	CLIMATE RISK INFORMATION. Annals of the New York Academy of Sciences, 2010, 1196, 147-228.	1.8	45
82	Sea level rise projections for current generation CGCMs based on the semiâ€empirical method. Geophysical Research Letters, 2008, 35, .	1.5	121
83	Application of NASA Climate Models and Missions to Agriculture DSS: The Solutions Network Approach. , 2008, , .		O
84	Variability of North Pacific Sea Ice and East Asia–North Pacific Winter Climate. Journal of Climate, 2007, 20, 1991-2001.	1.2	30
85	Causes of the northern highâ€latitude land surface winter climate change. Geophysical Research Letters, 2007, 34, .	1.5	21
86	Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. International Journal of Climatology, 2007, 27, 81-91.	1.5	31
87	Managing climate change risks in New York City's water system: assessment and adaptation planning. Mitigation and Adaptation Strategies for Global Change, 2007, 12, 1391-1409.	1.0	75
88	Urban Climate Science., 0,, 27-60.		14