
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5063604/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Simple Method for Estimatingf(E)andk0(E) in the Distributed Activation Energy Model. Energy &<br>Fuels, 1998, 12, 864-869.                                                                                         | 5.1 | 412       |
| 2  | Estimation of Hydrogen Bond Distribution in Coal through the Analysis of OH Stretching Bands in<br>Diffuse Reflectance Infrared Spectrum Measured by in-Situ Technique. Energy & Fuels, 2001, 15,<br>599-610.        | 5.1 | 170       |
| 3  | New Oxidative Degradation Method for Producing Fatty Acids in High Yields and High Selectivity from<br>Low-Rank Coals. Energy & Fuels, 1996, 10, 1196-1201.                                                          | 5.1 | 122       |
| 4  | A New Two-Step Oxidative Degradation Method for Producing Valuable Chemicals from Low Rank<br>Coals under Mild Conditions. Energy & Fuels, 2001, 15, 611-617.                                                        | 5.1 | 101       |
| 5  | Analysis of Formation Rates of Sulfur-Containing Gases during the Pyrolysis of Various Coals. Energy<br>& Fuels, 2001, 15, 629-636.                                                                                  | 5.1 | 95        |
| 6  | Fractionation of brown coal by sequential high temperature solvent extraction. Fuel, 2009, 88, 1485-1490.                                                                                                            | 6.4 | 73        |
| 7  | Extraction of Low-Rank Coals Oxidized with Hydrogen Peroxide in Conventionally Used Solvents at<br>Room Temperature. Energy & Fuels, 1997, 11, 825-831.                                                              | 5.1 | 70        |
| 8  | INTRAPARTICLE DIFFUSIVITIES IN LIQUID-PHASE ADSORPTION WITH NONLINEAR ISOTHERMS. Journal of Chemical Engineering of Japan, 1975, 8, 367-373.                                                                         | 0.6 | 47        |
| 9  | Analysis of Pyrolysis Reactions of Various Coals Including Argonne Premium Coals Using a New Distributed Activation Energy Model. Energy & Fuels, 1997, 11, 972-977.                                                 | 5.1 | 47        |
| 10 | Production of clean fuels by solvent skimming of coal at around 350°C. Fuel, 2004, 83, 733-738.                                                                                                                      | 6.4 | 46        |
| 11 | Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment. AICHE<br>Journal, 1982, 28, 737-746.                                                                                   | 3.6 | 45        |
| 12 | Low Rank Coal Upgrading in a Flow of Hot Water. Energy & Fuels, 2009, 23, 4533-4539.                                                                                                                                 | 5.1 | 44        |
| 13 | Production of High-Grade Carbonaceous Materials and Fuel Having Similar Chemical and Physical<br>Properties from Various Types of Biomass by Degradative Solvent Extraction. Energy & Fuels, 2012,<br>26, 4521-4531. | 5.1 | 44        |
| 14 | Upgrading and dewatering of low rank coals through solvent treatment at around 350°C and low temperature oxygen reactivity of the treated coals. Fuel, 2013, 114, 16-20.                                             | 6.4 | 43        |
| 15 | Conversion of Tar in Hot Coke Oven Gas by Pyrolysis and Steam Reforming Journal of Chemical<br>Engineering of Japan, 2003, 36, 735-741.                                                                              | 0.6 | 42        |
| 16 | Preparation of High-Grade Carbonaceous Materials Having Similar Chemical and Physical Properties<br>from Various Low-Rank Coals by Degradative Solvent Extraction. Energy & Fuels, 2012, 26,<br>6897-6904.           | 5.1 | 42        |
| 17 | Analytical solutions for the breakthrough curves of fixed-bed adsorbers under constant pattern and linear driving force approximations Journal of Chemical Engineering of Japan, 1977, 10, 490-493.                  | 0.6 | 39        |
| 18 | Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making. Bioresource Technology, 2016, 207, 85-91.                                                               | 9.6 | 39        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Adsorption of Water Vapor from Ambient Atmosphere onto Coal Fines Leading to Spontaneous<br>Heating of Coal Stockpile. Energy & Fuels, 2016, 30, 219-229.                                                                         | 5.1 | 38        |
| 20 | Enhancement of Reduction Rate of Iron Ore by Utilizing Iron Ore/Carbon Composite Consisting of Fine<br>Iron Ore Particles and Highly Thermoplastic Carbon Material. ISIJ International, 2011, 51, 1227-1233.                      | 1.4 | 37        |
| 21 | Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Materials, 2017, 32, 41-47.                                                            | 6.1 | 35        |
| 22 | A New Conversion Method for Recovering Valuable Chemicals from Oil Palm Shell Wastes Utilizing<br>Liquid-Phase Oxidation with H2O2under Mild Conditions. Energy & Fuels, 2000, 14, 1212-1218.                                     | 5.1 | 34        |
| 23 | Two-Stage Conversion of Low-Rank Coal or Biomass into Liquid Fuel under Mild Conditions. Energy<br>& Fuels, 2015, 29, 3127-3133.                                                                                                  | 5.1 | 33        |
| 24 | Mechanism study of degradative solvent extraction of biomass. Fuel, 2016, 165, 10-18.                                                                                                                                             | 6.4 | 31        |
| 25 | A New Method for Estimating the Cross-Linking Reaction during the Pyrolysis of Brown Coal Journal of Chemical Engineering of Japan, 2002, 35, 778-785.                                                                            | 0.6 | 30        |
| 26 | Examination of Low-Temperature Oxidation of Low-Rank Coals, Aiming at Understanding Their<br>Self-Ignition Tendency. Energy & Fuels, 2014, 28, 2402-2407.                                                                         | 5.1 | 29        |
| 27 | A Simulation Model for the Pyrolysis of Orimulsionâ€. Energy & Fuels, 1997, 11, 819-824.                                                                                                                                          | 5.1 | 27        |
| 28 | A simplified method to design fixed-bed adsorbers for the Freundlich isotherm Journal of Chemical<br>Engineering of Japan, 1976, 9, 388-392.                                                                                      | 0.6 | 26        |
| 29 | Flash Pyrolysis of Coal Modified through Liquid Phase Oxidation and Solvent Swelling. Energy &<br>Fuels, 1996, 10, 364-370.                                                                                                       | 5.1 | 26        |
| 30 | Conversion of a Wide Range of Low-Rank Coals into Upgraded Coals and Thermoplastic Extracts<br>Having Similar Chemical and Physical Properties Using Degradative Hydrothermal Extraction. Energy<br>& Fuels, 2010, 24, 3060-3065. | 5.1 | 26        |
| 31 | Estimation of Hydrogen Bond Distributions Formed between Coal and Polar Solvents Using in Situ IR<br>Technique. Energy & Fuels, 2002, 16, 23-31.                                                                                  | 5.1 | 25        |
| 32 | Enhancement of Reduction Rate of Iron Ore by Utilizing Low Grade Iron Ore and Brown Coal Derived<br>Carbonaceous Materials. ISIJ International, 2011, 51, 1234-1239.                                                              | 1.4 | 22        |
| 33 | Growth Kinetics of Polycrystalline Silicon from Silane by Thermal Chemical Vapor Deposition Method.<br>Journal of the Electrochemical Society, 1990, 137, 1000-1007.                                                              | 2.9 | 21        |
| 34 | Experimental verification of design methods for liquid phase fixed-bed adsorbers Journal of<br>Chemical Engineering of Japan, 1977, 10, 27-34.                                                                                    | 0.6 | 19        |
| 35 | Extraction of Low Rank Coals by Coal Derived Oils at 350.DEG.C. for Producing Clean Fuels Journal of Chemical Engineering of Japan, 2003, 36, 742-750.                                                                            | 0.6 | 19        |
| 36 | A method for calculating breakthrough curves of bicomponent fixed-bed adsorption under constant pattern and linear driving force Journal of Chemical Engineering of Japan, 1979, 12, 281-288.                                     | 0.6 | 17        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Simplified Method to Estimate f(E) in Distributed Activation Energy Model for Analyzing Coal Pyrolysis<br>Reaction Journal of Chemical Engineering of Japan, 1998, 31, 228-235.                                                                       | 0.6 | 17        |
| 38 | Degradative solvent extraction of biomass using petroleum based solvents. Bioresource Technology, 2018, 260, 169-176.                                                                                                                                 | 9.6 | 17        |
| 39 | Enhancement of Gasification Reactivity of Low-Rank Coal through High-Temperature Solvent<br>Treatment. Energy & Fuels, 2014, 28, 5690-5695.                                                                                                           | 5.1 | 16        |
| 40 | Degradative solvent extraction of demineralized and ion-exchanged low-rank coals. Journal of Fuel<br>Chemistry and Technology, 2014, 42, 897-904.                                                                                                     | 2.0 | 14        |
| 41 | Analytical solutions for the breakthrough curves of bicomponent fixed-bed adsorption under the langmuir isotherms Journal of Chemical Engineering of Japan, 1979, 12, 329-331.                                                                        | 0.6 | 13        |
| 42 | TG-DSC Study To Measure Heat of Desorption of Water during the Thermal Drying of Coal and To<br>Examine the Role of Adsorption of Water Vapor for Examining Spontaneous Heating of Coal over 100<br>°C. Energy & Fuels, 2017, 31, 10691-10698.        | 5.1 | 13        |
| 43 | Extended Detailed Chemical Kinetic Model for Benzene Pyrolysis with New Reaction Pathways<br>Including Oligomer Formation. Industrial & Engineering Chemistry Research, 2014, 53, 7956-7964.                                                          | 3.7 | 12        |
| 44 | Observation of Retrogressive Reactions under Liquefaction Conditions Utilizing the Oxidized Coal<br>Completely Dissolved in Solvent at Room Temperature. Energy & Fuels, 1998, 12, 975-980.                                                           | 5.1 | 10        |
| 45 | Formulation of the Heat Generation Rate of Low-Temperature Oxidation of Coal by Measuring Heat<br>Flow and Weight Change at Constant Temperatures Using Thermogravimetry–Differential Scanning<br>Calorimetry. Energy & Fuels, 2017, 31, 11669-11680. | 5.1 | 10        |
| 46 | Effect of Solvent on the Degradative Solvent Extraction of Low Rank Coal. Energy & Fuels, 2017, 31, 11954-11962.                                                                                                                                      | 5.1 | 9         |
| 47 | Production of Metallurgical Coke Utilizing Low-Rank Coals Upgraded by Mild Solvent Treatment. ISIJ<br>International, 2017, 57, 37-40.                                                                                                                 | 1.4 | 8         |
| 48 | Measurement of Temperature Increase of Dried Coal on Exposure to Ambient Atmosphere. Nihon<br>Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 1169-1172.                                                                        | 0.2 | 8         |
| 49 | Solvent Recycling Operation of the Degradative Solvent Extraction of Biomass to Minimize the<br>Amount of Solvent Required. Energy & Fuels, 2018, 32, 11555-11563.                                                                                    | 5.1 | 7         |
| 50 | Fossil Energy. Flash Pyrolysis of Coal-Methanol Slurry Kagaku Kogaku Ronbunshu, 1994, 20, 926-933.                                                                                                                                                    | 0.3 | 6         |
| 51 | Regeneration of activated carbons used in waste-water treatment by a moving-bed regenerator. AICHE<br>Journal, 1985, 31, 1986-1996.                                                                                                                   | 3.6 | 5         |
| 52 | Antibacterial Activity against <i>Staphylococcus aureus</i> of Carbon Materials Dispersed<br>with ZnO. Electrochemistry, 2000, 68, 280-283.                                                                                                           | 1.4 | 5         |
| 53 | Fossil Energy. Flash Pyrolysis of Coal as A Means for Obtaining Valuable Chemicals Kagaku Kogaku<br>Ronbunshu, 1994, 20, 733-746.                                                                                                                     | 0.3 | 4         |
| 54 | Fossil Energy. Co-Pyrolysis of Coal, Biomass and Waste Plastics Kagaku Kogaku Ronbunshu, 1994, 20,<br>918-925.                                                                                                                                        | 0.3 | 4         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Examination of the Carbonization Behavior of Coals by Using Raman Sectroscopy and Kinetic Analysis<br>of Hydrogen Formation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92,<br>145-151.                  | 0.4 | 4         |
| 56 | Simulation of Spontaneous Heating of a Small Fixed Bed of Dried Coal Exposed to a Flowing Wet Air<br>Stream. Energy & Fuels, 2019, 33, 6148-6160.                                                                                     | 5.1 | 4         |
| 57 | Reduction and Gasification Characteristics of A Unique Iron Ore/carbon Composite Prepared from Robe River and A Coal Tar Vacuum Residue. ISIJ International, 2019, 59, 2182-2192.                                                     | 1.4 | 4         |
| 58 | Production of Fuel Gas through the Hydrothermal Gasification of Wastewater Using Highly Active Carbon-Base Catalyst. Journal of Chemical Engineering of Japan, 2007, 40, 1210-1215.                                                   | 0.6 | 3         |
| 59 | Experimental Study of Gas-Phase Pyrolysis Reaction of Benzene to Investigate the Early Stage of Coke<br>Formation. Journal of Chemical Engineering of Japan, 2014, 47, 406-415.                                                       | 0.6 | 3         |
| 60 | Examination of Interactions of Solvent-Treated Coal with Oxygen and Water Vapor at Over 100 °C<br>Using TG-DSC for Examining Propensity to Spontaneous Heating of the Solvent-Treated Coal. Energy<br>& Fuels, 2017, 31, 11723-11730. | 5.1 | 3         |
| 61 | Antibacterial Activity of Zn2+ Ion Exchange Resin Carbonized at Several Temperatures. Tanso, 2000, 2000, 2000, 2-7.                                                                                                                   | 0.1 | 3         |
| 62 | Preparation of Immobilized Nanostructured Titania by Using Mesoporous Carbons as Nanoreactors:<br>Investigation of Process Parameters. Journal of Chemical Engineering of Japan, 2008, 41, 497-506.                                   | 0.6 | 1         |
| 63 | Upgrading of low-rank coal and biomass utilizing mild solvent treatment at around 350°C. , 2011, , .                                                                                                                                  |     | 1         |
| 64 | Co-Processing of <i>Resid</i> and Low-Grade Iron Ore to Produce Light Oil and an Iron<br>Ore/Carbon Composite for Iron Making. Journal of Chemical Engineering of Japan, 2016, 49, 300-304.                                           | 0.6 | 1         |
| 65 | Coal Pyrolysis as a Means to Recover Valuable Chemicals from Coal. International Journal of the Society of Materials Engineering for Resources, 1999, 7, 222-229.                                                                     | 0.1 | 1         |
| 66 | Kinetic Study on the Coagula Formation Reactions Using the Orthogonal Collocation Method.<br>Journal of Chemical Engineering of Japan, 2007, 40, 480-486.                                                                             | 0.6 | 1         |
| 67 | Kinetic Study on the Coagula Formation Reactions Using an Extended Unreacted Core Model. Journal of Chemical Engineering of Japan, 2007, 40, 473-479.                                                                                 | 0.6 | 1         |
| 68 | Preparation of nanosized metal (oxides) by gas phase hydrolysis using mesoporous materials as nanoreactors. Journal of Nanoparticle Research, 2009, 11, 2049-2059.                                                                    | 1.9 | 0         |
| 69 | MICROPOROUS CARBON ADSORBENTS FROM OIL PALM SHELLS FOR GAS SEPARATION. , 2000, , .                                                                                                                                                    |     | 0         |