
Hongchen Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5063595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Acvr1</i> deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKLâ€induced osteoclastogenesis. Journal of Cellular Physiology, 2021, 236, 4580-4591.	4.1	5
2	Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway. Advanced Healthcare Materials, 2021, 10, e2100196.	7.6	32
3	Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. International Journal of Oral Science, 2021, 13, 27.	8.6	15
4	Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. Journal of Colloid and Interface Science, 2021, 601, 650-660.	9.4	19
5	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 50287-50302.	8.0	40
6	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Î²/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	14.9	19
7	Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dental Materials, 2020, 36, e229-e240.	3.5	20
8	Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2α-ATF4 pathway. Biomaterials Science, 2020, 8, 2840-2852.	5.4	22
9	Bone mesenchymal stem cells are recruited via CXCL8 XCR2 and promote EMT through TGFâ€Î² signal pathways in oral squamous carcinoma. Cell Proliferation, 2020, 53, e12859.	5.3	21
10	Growthâ€Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation. Advanced Functional Materials, 2020, 30, 1906205.	14.9	65
11	Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomaterials Science, 2019, 7, 1052-1063.	5.4	31
12	Osteogenic potential of Zn ²⁺ -passivated carbon dots for bone regeneration <i>in vivo</i> . Biomaterials Science, 2019, 7, 5414-5423.	5.4	46
13	Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. Nanoscale, 2019, 11, 21953-21963.	5.6	15
14	Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. Journal of Molecular Histology, 2019, 50, 43-61.	2.2	13
15	Bone morphogenetic protein signaling through ACVR1 and BMPR1A negatively regulates bone mass along with alterations in bone composition. Journal of Structural Biology, 2018, 201, 237-246.	2.8	24
16	Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. International Journal of Nanomedicine, 2018, Volume 13, 7167-7181.	6.7	37
17	Tumor Theranostics of Transition Metal Ions Loaded Polyaminopyrrole Nanoparticles. Nanotheranostics, 2018, 2, 211-221.	5.2	2
18	ACVR1 is essential for periodontium development and promotes alveolar bone formation. Archives of Oral Biology, 2018, 95, 108-117.	1.8	4

HONGCHEN SUN

#	Article	IF	CITATIONS
19	Photothermal-Activatable Fe ₃ O ₄ Superparticle Nanodrug Carriers with PD-L1 Immune Checkpoint Blockade for Anti-metastatic Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2018, 10, 20342-20355.	8.0	112
20	Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity. ACS Applied Materials & Interfaces, 2017, 9, 3376-3387.	8.0	35
21	One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale, 2017, 9, 7135-7142.	5.6	201
22	Cu ²⁺ -Loaded Polydopamine Nanoparticles for Magnetic Resonance Imaging-Guided pH- and Near-Infrared-Light-Stimulated Thermochemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 19706-19716.	8.0	103
23	Cu(II)-Doped Polydopamine-Coated Gold Nanorods for Tumor Theranostics. ACS Applied Materials & Interfaces, 2017, 9, 44293-44306.	8.0	45
24	Electrostatic attraction driven and shuttle-like morphology assisted enhancement for tumor uptake. RSC Advances, 2017, 7, 56621-56628.	3.6	4
25	Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials, 2016, 104, 213-222.	11.4	48
26	Fe ₃ O ₄ @polydopamine Composite Theranostic Superparticles Employing Preassembled Fe ₃ O ₄ Nanoparticles as the Core. ACS Applied Materials & Interfaces, 2016, 8, 22942-22952.	8.0	135
27	Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Scientific Reports, 2016, 6, 24256.	3.3	32
28	Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Applied Materials & Interfaces, 2016, 8, 32706-32716.	8.0	140
29	Hydroquinone-Assisted Synthesis of Branched Au–Ag Nanoparticles with Polydopamine Coating as Highly Efficient Photothermal Agents. ACS Applied Materials & Interfaces, 2015, 7, 11613-11623.	8.0	95
30	Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS Applied Materials & Interfaces, 2015, 7, 20801-20812.	8.0	58
31	Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. International Journal of Nanomedicine, 2014, 9, 2179.	6.7	19
32	Enhanced Biocompatibility of PLGA Nanofibers with Gelatin/Nano-Hydroxyapatite Bone Biomimetics Incorporation. ACS Applied Materials & Interfaces, 2014, 6, 9402-9410.	8.0	116
33	Potential of Mesenchymal Stem Cells by Adenovirus-Mediated Erythropoietin Gene Therapy Approaches for Bone Defect. Cell Biochemistry and Biophysics, 2014, 70, 1199-1204.	1.8	12
34	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	13.8	2,907